
Contents

 Component Extensions for .NET and UWP
 Tracking reference operator
 Handle to object operator (^)
 abstract
 Arrays
 Boxing
 Classes and structs
 Platform, default, and cli namespaces
 Compiler support for type traits
 Context-sensitive keywords
 delegate
 enum class
 event
 Exception handling
 Explicit overrides
 ref new, gcnew
 Generics

 Generics
 Overview of generics in Visual C++
 Generic functions
 Generic classes
 Generic interfaces
 Generic delegates
 Constraints on generic type parameters
 Consuming generics
 Generics and templates
 How to: Improve performance with generics

 interface class
 literal

 Windows Runtime and managed templates
 new (new slot in vtable)
 nullptr
 Override specifiers
 override
 partial
 property
 safe_cast
 String
 sealed
 typeid
 User-defined attributes

 User-defined attributes
 Attribute parameter types
 Attribute targets

 Extensions that are specific to C++/CLI
 Extensions that are specific to C++/CLI
 __identifier
 C-style casts with -clr
 interior_ptr

 interior_ptr
 How to: Declare and use interior pointers and managed arrays
 How to: Declare value types with the interior_ptr keyword
 How to: Overload functions with interior pointers and native pointers
 How to: Declare interior pointers with the const keyword

 pin_ptr
 pin_ptr
 How to: Pin pointers and arrays
 How to: Declare pinning pointers and value types

 Type forwarding
 Variable argument lists (...)

Component Extensions for .NET and UWP
 5/13/2022 • 5 minutes to read • Edit Online

NOTE

 Two runtimes, one set of extensions

 Data Type Keywords

KEY W O RD C O N T EXT SEN SIT IVE P URP O SE REF EREN C E

ref class

ref struct

No Declares a class. Classes and Structs

value class

value struct

No Declares a value class. Classes and Structs

interface class

interface struct

No Declares an interface. interface class

The C++ standard allows compiler vendors to provide non-standard extensions to the language. Microsoft

provides extensions to help you connect native C++ code to code that runs on the .NET Framework or the

Universal Windows Platform (UWP). The .NET extensions are called C++/CLI and produce code that executes in

the .NET managed execution environment that is called the Common Language Runtime (CLR). The UWP

extensions are called C++/CX and they produce native machine code.

For new applications, we recommend using C++/WinRT rather than C++/CX. C++/WinRT is a new, standard C++17

language projection for Windows Runtime APIs. We will continue to support C++/CX and WRL, but highly recommend

that new applications use C++/WinRT. For more information, see C++/WinRT.

C++/CLI extends the ISO/ANSI C++ standard, and is defined under the Ecma C++/CLI Standard. For more

information, see .NET Programming with C++/CLI (Visual C++).

The C++/CX extensions are a subset of C++/CLI. Although the extension syntax is identical in most cases, the

code that is generated depends on whether you specify the /ZW compiler option to target UWP, or the /clr

option to target .NET. These switches are set automatically when you use Visual Studio to create a project.

The language extensions include aggregate keywords, which consist of two tokens separated by white space.

The tokens might have one meaning when they are used separately, and another meaning when they are used

together. For example, the word "ref" is an ordinary identifier, and the word "class" is a keyword that declares a

native class. But when these words are combined to form ref class , the resulting aggregate keyword declares

an entity that is known as a runtime class.

The extensions also include context-sensitive keywords. A keyword is treated as context-sensitive depending on

the kind of statement that contains it, and its placement in that statement. For example, the token "property" can

be an identifier, or it can declare a special kind of public class member.

The following table lists keywords in the C++ language extension.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/component-extensions-for-runtime-platforms.md
https://docs.microsoft.com/en-us/windows/uwp/cpp-and-winrt-apis/index
https://docs.microsoft.com/en-us/cpp/dotnet/dotnet-programming-with-cpp-cli-visual-cpp

enum class

enum struct

No Declares an enumeration. enum class

property Yes Declares a property. property

delegate Yes Declares a delegate. delegate (C++/CLI and
C++/CX)

event Yes Declares an event. event

KEY W O RD C O N T EXT SEN SIT IVE P URP O SE REF EREN C E

 Override Specifiers

KEY W O RD C O N T EXT SEN SIT IVE P URP O SE REF EREN C E

abstract Yes Indicates that functions or
classes are abstract.

abstract

new No Indicates that a function is
not an override of a base
class version.

new (new slot in vtable)

override Yes Indicates that a method
must be an override of a
base-class version.

override

sealed Yes Prevents classes from being
used as base classes.

sealed

 Keywords for Generics

KEY W O RD C O N T EXT SEN SIT IVE P URP O SE

generic No Declares a generic type.

where Yes Specifies the constraints that are
applied to a generic type parameter.

 Miscellaneous Keywords

You can use the following keywords to qualify override behavior for derivation. Although the new keyword is

not an extension of C++, it is listed here because it can be used in an additional context. Some specifiers are also

valid for native programming. For more information, see How to: Declare Override Specifiers in Native

Compilations (C++/CLI).

The following keywords have been added to support generic types. For more information, see Generics.

The following keywords have been added to the C++ extensions.

https://docs.microsoft.com/en-us/cpp/dotnet/how-to-declare-override-specifiers-in-native-compilations-cpp-cli

KEY W O RD C O N T EXT SEN SIT IVE P URP O SE REF EREN C E

finally Yes Indicates default exception
handlings behavior.

Exception Handling

for each, in No Enumerates elements of a
collection.

for each, in

gcnew No Allocates types on the
garbage-collected heap.
Use instead of new and

delete .

ref new, gcnew

ref new Yes Allocates a Windows
Runtime type. Use instead
of new and delete .

ref new, gcnew

initonly Yes Indicates that a member
can only be initialized at
declaration or in a static
constructor.

initonly (C++/CLI)

literal Yes Creates a literal variable. literal

nullptr No Indicates that a handle or
pointer does not point at
an object.

nullptr

 Template Constructs

KEY W O RD P URP O SE REF EREN C E

array Declares an array. Arrays

interior_ptr (CLR only) Points to data in a reference
type.

interior_ptr (C++/CLI)

pin_ptr (CLR only) Points to CLR reference
types to temporarily suppress the
garbage-collection system.

pin_ptr (C++/CLI)

safe_cast Determines and executes the optimal
casting method for a runtime type.

safe_cast

typeid (CLR only) Retrieves a System.Type
object that describes the given type or
object.

typeid

 Declarators

The following language constructs are implemented as templates, instead of as keywords. If you specify the

/ZW compiler option, they are defined in the lang namespace. If you specify the /clr compiler option, they

are defined in the cli namespace.

The following type declarators instruct the runtime to automatically manage the lifetime and deletion of

https://docs.microsoft.com/en-us/cpp/dotnet/for-each-in
https://docs.microsoft.com/en-us/cpp/dotnet/initonly-cpp-cli
https://docs.microsoft.com/en-us/dotnet/api/system.type

O P ERATO R P URP O SE REF EREN C E

^ Declares a handle to an object; that is,
a pointer to a Windows Runtime or
CLR object that is automatically
deleted when it is no longer usable.

Handle to Object Operator (^)

% Declares a tracking reference; that is, a
reference to a Windows Runtime or
CLR object that is automatically
deleted when it is no longer usable.

Tracking Reference Operator

 Additional Constructs and Related Topics

TO P IC DESC RIP T IO N

__identifier (C++/CLI) (Windows Runtime and CLR) Enables the use of keywords as
identifiers.

Variable Argument Lists (...) (C++/CLI) (Windows Runtime and CLR) Enables a function to take a
variable number of arguments.

.NET Framework Equivalents to C++ Native Types (C++/CLI) Lists the CLR types that are used in place of C++ integral
types.

appdomain __declspec modifier __declspec modifier that mandates that static and global

variables exist per appdomain.

C-Style Casts with /clr (C++/CLI) Describes how C-style casts are interpreted.

__clrcall calling convention Indicates the CLR-conformant calling convention.

__cplusplus_cli Predefined Macros

Custom Attributes Describes how to define your own CLR attributes.

Exception Handling Provides an overview of exception handling.

Explicit Overrides Demonstrates how member functions can override arbitrary
members.

Friend Assemblies (C++) Discusses how a client assembly can access all types in an
assembly component.

Boxing Demonstrates the conditions in which values types are
boxed.

Compiler Support for Type Traits Discusses how to detect characteristics of types at compile
time.

allocated objects.

This section lists additional programming constructs, and topics that pertain to the CLR.

https://docs.microsoft.com/en-us/cpp/dotnet/managed-types-cpp-cli
https://docs.microsoft.com/en-us/cpp/cpp/appdomain
https://docs.microsoft.com/en-us/cpp/cpp/clrcall
https://docs.microsoft.com/en-us/cpp/preprocessor/predefined-macros
https://docs.microsoft.com/en-us/cpp/dotnet/friend-assemblies-cpp

managed, unmanaged pragmas Demonstrates how managed and unmanaged functions can
co-exist in the same module.

process __declspec modifier __declspec modifier that mandates that static and global

variables exist per process.

Reflection (C++/CLI) Demonstrates the CLR version of run-time type information.

String Discusses compiler conversion of string literals to String.

Type Forwarding (C++/CLI) Enables the movement of a type in a shipping assembly to
another assembly so that client code does not have to be
recompiled.

User-Defined Attributes Demonstrates user-defined attributes.

#using Directive Imports external assemblies.

XML Documentation Explains XML-based code documentation by using /doc
(Process Documentation Comments) (C/C++)

TO P IC DESC RIP T IO N

 See also
.NET Programming with C++/CLI (Visual C++)

Native and .NET Interoperability

https://docs.microsoft.com/en-us/cpp/preprocessor/managed-unmanaged
https://docs.microsoft.com/en-us/cpp/cpp/process
https://docs.microsoft.com/en-us/cpp/dotnet/reflection-cpp-cli
https://docs.microsoft.com/en-us/dotnet/api/system.string
https://docs.microsoft.com/en-us/cpp/preprocessor/hash-using-directive-cpp
https://docs.microsoft.com/en-us/cpp/build/reference/xml-documentation-visual-cpp
https://docs.microsoft.com/en-us/cpp/build/reference/doc-process-documentation-comments-c-cpp
https://docs.microsoft.com/en-us/cpp/dotnet/dotnet-programming-with-cpp-cli-visual-cpp
https://docs.microsoft.com/en-us/cpp/dotnet/native-and-dotnet-interoperability

Tracking Reference Operator (C++/CLI and
C++/CX)

 5/13/2022 • 2 minutes to read • Edit Online

 All Platforms

 Windows Runtime

Foo^ spFoo = ref new Foo();
Foo% srFoo = *spFoo;
Foo^ spFoo2 = %srFoo;

ref class Foo sealed {};

 // internal or private
 void UseFooHelper(Foo% f)
 {
 auto x = %f;
 }

 // public method on ABI boundary
 void UseFoo(Foo^ f)
 {
 if (f != nullptr) { UseFooHelper(*f); }
 }

 Common Language Runtime

A tracking reference (%) behaves like an ordinary C++ reference (&) except that when an object is assigned to

a tracking reference, the object's reference count is incremented.

A tracking reference has the following characteristics.

Assignment of an object to a tracking reference causes the object's reference count to be incremented.

A native reference (&) is the result when you dereference a * . A tracking reference (%) is the result

when you dereference a ^ . As long as you have a % to an object, the object will stay alive in memory.

The dot (.) member-access operator is used to access a member of the object.

Tracking references are valid for value types and handles (for example String^).

A tracking reference cannot be assigned a null or nullptr value. A tracking reference may be reassigned

to another valid object as many times as required.

A tracking reference cannot be used as a unary take-address operator.

A tracking reference behaves like a standard C++ reference, except that a % is reference-counted. The following

snippet shows how to convert between % and ^ types:

The following example shows how to pass a ^ to a function that takes a %.

In C++/CLI, you can use a tracking reference to a handle when you bind to an object of a CLR type on the

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/tracking-reference-operator-cpp-component-extensions.md

 Examples

// tracking_reference_1.cpp
// compile with: /clr
ref class MyClass {
public:
 int i;
};

value struct MyStruct {
 int k;
};

int main() {
 MyClass ^ x = ref new MyClass;
 MyClass ^% y = x; // tracking reference handle to reference object

 int %ti = x->i; // tracking reference to member of reference type

 int j = 0;
 int %tj = j; // tracking reference to object on the stack

 int * pi = new int[2];
 int % ti2 = pi[0]; // tracking reference to object on native heap

 int *% tpi = pi; // tracking reference to native pointer

 MyStruct ^ x2 = ref new MyStruct;
 MyStruct ^% y2 = x2; // tracking reference to value object

 MyStruct z;
 int %tk = z.k; // tracking reference to member of value type

 delete[] pi;
}

garbage-collected heap.

In the CLR, the value of a tracking reference variable is updated automatically whenever the garbage collector

moves the referenced object.

A tracking reference can be declared only on the stack. A tracking reference cannot be a member of a class.

It is not possible to have a native C++ reference to an object on the garbage-collected heap.

For more information about tracking references in C++/CLI, see:

How to: Use Tracking References in C++/CLI

The following sample for C++/CLI shows how to use a tracking reference with native and managed types.

The following sample for C++/CLI shows how to bind a tracking reference to an array.

https://docs.microsoft.com/en-us/cpp/dotnet/how-to-use-tracking-references-in-cpp-cli

// tracking_reference_2.cpp
// compile with: /clr
using namespace System;

int main() {
 array<int> ^ a = ref new array<Int32>(5);
 a[0] = 21;
 Console::WriteLine(a[0]);
 array<int> ^% arr = a;
 arr[0] = 222;
 Console::WriteLine(a[0]);
}

21
222

Handle to Object Operator (^) (C++/CLI and
C++/CX)

 5/13/2022 • 5 minutes to read • Edit Online

 Accessing the Declared Object

 Windows Runtime

 Requirements

 Common Language Runtime

 Examples

The handle declarator (^ , pronounced "hat"), modifies the type specifier to mean that the declared object

should be automatically deleted when the system determines that the object is no longer accessible.

A variable that is declared with the handle declarator behaves like a pointer to the object. However, the variable

points to the entire object, cannot point to a member of the object, and it does not support pointer arithmetic.

Use the indirection operator (*) to access the object, and the arrow member-access operator (->) to access a

member of the object.

The compiler uses the COM reference counting mechanism to determine if the object is no longer being used

and can be deleted. This is possible because an object that is derived from a Windows Runtime interface is

actually a COM object. The reference count is incremented when the object is created or copied, and

decremented when the object is set to null or goes out of scope. If the reference count goes to zero, the object is

automatically and immediately deleted.

The advantage of the handle declarator is that in COM you must explicitly manage the reference count for an

object, which is a tedious and error prone process. That is, to increment and decrement the reference count you

must call the object's AddRef() and Release() methods. However, if you declare an object with the handle

declarator, the compiler generates code that automatically adjusts the reference count.

For information on how to instantiate an object, see ref new.

Compiler option: /ZW

The system uses the CLR garbage collector mechanism to determine if the object is no longer being used and

can be deleted. The common language runtime maintains a heap on which it allocates objects, and uses

managed references (variables) in your program indicate the location of objects on the heap. When an object is

no longer used, the memory that it occupied on the heap is freed. Periodically, the garbage collector compacts

the heap to better use the freed memory. Compacting the heap can move objects on the heap, which invalidates

the locations referred to by managed references. However, the garbage collector is aware of the location of all

managed references, and automatically updates them to indicate the current location of the objects on the heap.

Because native C++ pointers (*) and references (&) are not managed references, the garbage collector cannot

automatically update the addresses they point to. To solve this problem, use the handle declarator to specify a

variable that the garbage collector is aware of and can update automatically.

For more information, see How to: Declare Handles in Native Types.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/handle-to-object-operator-hat-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cpp/declarations-and-definitions-cpp
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-declare-handles-in-native-types

// mcppv2_handle.cpp
// compile with: /clr
ref class MyClass {
public:
 MyClass() : i(){}
 int i;
 void Test() {
 i++;
 System::Console::WriteLine(i);
 }
};

int main() {
 MyClass ^ p_MyClass = gcnew MyClass;
 p_MyClass->Test();

 MyClass ^ p_MyClass2;
 p_MyClass2 = p_MyClass;

 p_MyClass = nullptr;
 p_MyClass2->Test();
}

1
2

// mcppv2_handle_2.cpp
// compile with: /clr
using namespace System;

void Test(Object^ o) {
 Int32^ i = dynamic_cast<Int32^>(o);

 if(i)
 Console::WriteLine(i);
 else
 Console::WriteLine("Not a boxed int");
}

int main() {
 String^ str = "test";
 Test(str);

 int n = 100;
 Test(n);
}

Not a boxed int
100

This sample shows how to create an instance of a reference type on the managed heap. This sample also shows

that you can initialize one handle with another, resulting in two references to same object on managed, garbage-

collected heap. Notice that assigning nullptr to one handle does not mark the object for garbage collection.

The following sample shows how to declare a handle to an object on the managed heap, where the type of

object is a boxed value type. The sample also shows how to get the value type from the boxed object.

This sample shows that the common C++ idiom of using a void* pointer to point to an arbitrary object is

replaced by Object^ , which can hold a handle to any reference class. It also shows that all types, such as arrays

// mcppv2_handle_3.cpp
// compile with: /clr
using namespace System;
using namespace System::Collections;
public delegate void MyDel();
ref class MyClass {
public:
 void Test() {}
};

void Test(Object ^ x) {
 Console::WriteLine("Type is {0}", x->GetType());
}

int main() {
 // handle to Object can hold any ref type
 Object ^ h_MyClass = gcnew MyClass;

 ArrayList ^ arr = gcnew ArrayList();
 arr->Add(gcnew MyClass);

 h_MyClass = dynamic_cast<MyClass ^>(arr[0]);
 Test(arr);

 Int32 ^ bi = 1;
 Test(bi);

 MyClass ^ h_MyClass2 = gcnew MyClass;

 MyDel^ DelInst = gcnew MyDel(h_MyClass2, &MyClass::Test);
 Test(DelInst);
}

Type is System.Collections.ArrayList

Type is System.Int32

Type is MyDel

and delegates, can be converted to an object handle.

This sample shows that a handle can be dereferenced and that a member can be accessed via a dereferenced

handle.

// mcppv2_handle_4.cpp
// compile with: /clr
using namespace System;
value struct DataCollection {
private:
 int Size;
 array<String^>^ x;

public:
 DataCollection(int i) : Size(i) {
 x = gcnew array<String^>(Size);
 for (int i = 0 ; i < Size ; i++)
 x[i] = i.ToString();
 }

 void f(int Item) {
 if (Item >= Size)
 {
 System::Console::WriteLine("Cannot access array element {0}, size is {1}", Item, Size);
 return;
 }
 else
 System::Console::WriteLine("Array value: {0}", x[Item]);
 }
};

void f(DataCollection y, int Item) {
 y.f(Item);
}

int main() {
 DataCollection ^ a = gcnew DataCollection(10);
 f(*a, 7); // dereference a handle, return handle's object
 (*a).f(11); // access member via dereferenced handle
}

Array value: 7

Cannot access array element 11, size is 10

// mcppv2_handle_5.cpp
// compile with: /clr
ref struct A {
 void Test(unsigned int &){}
 void Test2(unsigned int %){}
 unsigned int i;
};

int main() {
 A a;
 a.i = 9;
 a.Test(a.i); // C2664
 a.Test2(a.i); // OK

 unsigned int j = 0;
 a.Test(j); // OK
}

This sample shows that a native reference (&) can't bind to an int member of a managed type, as the int

might be stored in the garbage collected heap, and native references don't track object movement in the

managed heap. The fix is to use a local variable, or to change & to % , making it a tracking reference.

Requirements

 See also

Compiler option: /clr

Component Extensions for .NET and UWP

Tracking Reference Operator

abstract (C++/CLI and C++/CX)
 5/13/2022 • 2 minutes to read • Edit Online

 All Platforms
 Syntax

 Remarks

 Windows Runtime

 Requirements

 Common Language Runtime
 Requirements

 Examples

The abstract keyword declares either :

A type can be used as a base type, but the type itself cannot be instantiated.

A type member function can be defined only in a derived type.

class-declaration class-identifier abstract {}

virtual return-type member-function-identifier () abstract ;

The first example syntax declares a class to be abstract. The class-declaration component can be either a native

C++ declaration (** class **** or struct), or a C++ extension declaration (ref class or ref struct) if the /ZW

or /clr compiler option is specified.

The second example syntax declares a virtual member function to be abstract. Declaring a function abstract is

the same as declaring it a pure virtual function. Declaring a member function abstract also causes the enclosing

class to be declared abstract.

The abstract keyword is supported in native and platform-specific code; that is, it can be compiled with or

without the /ZW or /clr compiler option.

You can detect at compile time if a type is abstract with the __is_abstract(type) type trait. For more

information, see Compiler Support for Type Traits.

The abstract keyword is a context-sensitive override specifier. For more information about context-sensitive

keywords, see Context-Sensitive Keywords. For more information about override specifiers, see How to: Declare

Override Specifiers in Native Compilations.

For more information, see Ref classes and structs.

Compiler option: /ZW

Compiler option: /clr

The following code example generates an error because class X is marked abstract.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/abstract-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-declare-override-specifiers-in-native-compilations-cpp-cli
https://docs.microsoft.com/en-us/cpp/cppcx/ref-classes-and-structs-c-cx

// abstract_keyword.cpp
// compile with: /clr
ref class X abstract {
public:
 virtual void f() {}
};

int main() {
 X ^ MyX = gcnew X; // C3622
}

// abstract_keyword_2.cpp
class X abstract {
public:
 virtual void f() {}
};

int main() {
 X * MyX = new X; // C3622: 'X': a class declared as 'abstract'
 // cannot be instantiated. See declaration of 'X'}

// abstract_keyword_3.cpp
// compile with: /clr
ref class X {
public:
 virtual void f() abstract {} // C3634
 virtual void g() = 0 {} // C3634
};

 See also

The following code example generates an error because it instantiates a native class that is marked abstract.

This error will occur with or without the /clr compiler option.

The following code example generates an error because function f includes a definition but is marked

abstract. The final statement in the example shows that declaring an abstract virtual function is equivalent to

declaring a pure virtual function.

Component Extensions for .NET and UWP

Arrays (C++/CLI and C++/CX)
 5/13/2022 • 4 minutes to read • Edit Online

 All Platforms

 Windows Runtime

 Syntax

[qualifiers] [Platform::]Array<[qualifiers] array-type [,rank]>^ identifier =
 ref new[Platform::]Array<initialization-type> [{initialization-list [,...]}]

[qualifiers] [Platform::]Array<[qualifiers] array-type [,rank]>^ identifier =
 {initialization-list [,...]}

The Platform::Array<T> type in C++/CX, or the array keyword in C++/CLI, declares an array of a specified type

and initial value.

The array must be declared by using the handle-to-object (^) modifier after the closing angle bracket (>) in the

declaration. The number of elements of the array is not part of the type. One array variable can refer to arrays of

different sizes.

Unlike standard C++, subscripting is not a synonym for pointer arithmetic and is not commutative.

For more information about arrays, see:

How to: Use Arrays in C++/CLI

Variable Argument Lists (...) (C++/CLI)

Arrays are members of the Platform namespace. Arrays can be only one-dimensional.

The first example of the syntax uses the ref new aggregate keyword to allocate an array. The second example

declares a local array.

qualifiers

(Optional) One or more of these storage class specifiers: mutable, volatile, const, extern, static.

array-type

The type of the array variable. Valid types are Windows Runtime classes and fundamental types, ref classes and

structs, value classes and structs, and native pointers (type*).

rank

(Optional) The number of dimensions of the array. Must be 1.

identifier

The name of the array variable.

initialization-type

The type of the values that initialize the array. Typically, array-type and initialization-type are the same type.

However, the types can be different if there is a conversion from initialization-type to array-type—for example, if

initialization-type is derived from array-type.

initialization-list

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/arrays-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-use-arrays-in-cpp-cli
https://docs.microsoft.com/en-us/cpp/cpp/mutable-data-members-cpp
https://docs.microsoft.com/en-us/cpp/cpp/volatile-cpp
https://docs.microsoft.com/en-us/cpp/cpp/const-cpp
https://docs.microsoft.com/en-us/cpp/cpp/extern-cpp
https://docs.microsoft.com/en-us/cpp/cpp/static-members-cpp

 Remarks

 Requirements

 Examples

// cwr_array.cpp
// compile with: /ZW
using namespace Platform;
ref class MyClass {};
int main() {
 // one-dimensional array
 Array<MyClass^>^ My1DArray = ref new Array<MyClass^>(100);
 My1DArray[99] = ref new MyClass();
}

 Common Language Runtime
 Syntax

[qualifiers] [cli::]array<[qualifiers] array-type [,rank]>^ identifier =
 gcnew [cli::]array<initialization-type[,rank]>(rank-size-list[,...]) [{initialization-list [,...]}]

[qualifiers] [cli::]array<[qualifiers] array-type [,rank]>^ identifier =
 {initialization-list [,...]}

(Optional) A comma-delimited list of values in curly brackets that initialize the elements of the array. For

example, if rank-size-list were (3) , which declares a one-dimensional array of 3 elements, initialization list

could be {1,2,3} .

You can detect at compile time whether a type is a reference-counted array with __is_ref_array(type) . For

more information, see Compiler Support for Type Traits.

Compiler option: /ZW

The following example creates a one-dimensional array that has 100 elements.

The first example of the syntax uses the gcnew keyword to allocate an array. The second example declares a

local array.

qualifiers

(Optional) One or more of these storage class specifiers: mutable, volatile, const, extern, static.

array-type

The type of the array variable. Valid types are Windows Runtime classes and fundamental types, ref classes and

structs, value classes and structs, native pointers (type*), and native POD (plain old data) types.

rank

(Optional) The number of dimensions of the array. The default is 1; the maximum is 32. Each dimension of the

array is itself an array.

identifier

The name of the array variable.

initialization-type

The type of the values that initialize the array. Typically, array-type and initialization-type are the same type.

However, the types can be different if there is a conversion from initialization-type to array-type—for example, if

initialization-type is derived from array-type.

rank-size-list

https://docs.microsoft.com/en-us/cpp/cpp/mutable-data-members-cpp
https://docs.microsoft.com/en-us/cpp/cpp/volatile-cpp
https://docs.microsoft.com/en-us/cpp/cpp/const-cpp
https://docs.microsoft.com/en-us/cpp/cpp/extern-cpp
https://docs.microsoft.com/en-us/cpp/cpp/static-members-cpp

 Remarks

 Requirements

 Examples

// clr_array.cpp
// compile with: /clr
ref class MyClass {};
int main() {
 // one-dimensional array
 array<MyClass ^> ^ My1DArray = gcnew array<MyClass ^>(100);
 My1DArray[99] = gcnew MyClass();

 // three-dimensional array
 array<MyClass ^, 3> ^ My3DArray = gcnew array<MyClass ^, 3>(3, 5, 6);
 My3DArray[0,0,0] = gcnew MyClass();
}

 See also

A comma-delimited list of the size of each dimension in the array. Alternatively, if the initialization-list parameter

is specified, the compiler can deduce the size of each dimension and rank-size-list can be omitted.

initialization-list

(Optional) A comma-delimited list of values in curly brackets that initialize the elements of the array. Or a

comma-delimited list of nested initialization-list items that initialize the elements in a multi-dimensional array.

For example, if rank-size-list were (3) , which declares a one-dimensional array of 3 elements, initialization list

could be {1,2,3} . If rank-size-list were (3,2,4) , which declares a three-dimensional array of 3 elements in the

first dimension, 2 elements in the second, and 4 elements in the third, initialization-list could be

{{1,2,3},{0,0},{-5,10,-21,99}} .)

array is in the Platform, default, and cli Namespaces namespace.

Like standard C++, the indices of an array are zero-based, and an array is subscripted by using square brackets

([]). Unlike standard C++, the indices of a multi-dimensional array are specified in a list of indices for each

dimension instead of a set of square-bracket ([]) operators for each dimension. For example, identifier[index1,

index2] instead of identifier[index1][index2].

All managed arrays inherit from System::Array . Any method or property of System::Array can be applied

directly to the array variable.

When you allocate an array whose element type is pointer-to a managed class, the elements are 0-initialized.

When you allocate an array whose element type is a value type V , the default constructor for V is applied to

each array element. For more information, see .NET Framework Equivalents to C++ Native Types (C++/CLI).

At compile time, you can detect whether a type is a common language runtime (CLR) array with

__is_ref_array(type) . For more information, see Compiler Support for Type Traits.

Compiler option: /clr

The following example creates a one-dimensional array that has 100 elements, and a three-dimensional array

that has 3 elements in the first dimension, 5 elements in the second, and 6 elements in the third.

Component Extensions for .NET and UWP

https://docs.microsoft.com/en-us/cpp/dotnet/managed-types-cpp-cli

Boxing (C++/CLI and C++/CX)
 5/13/2022 • 3 minutes to read • Edit Online

 All Runtimes

 Windows Runtime

 Platform::Object^
 object_variable = value_variable;
value_variable = (value_type) object_variable;

 Requirements

 Examples

The conversion of value types to objects is called boxing, and the conversion of objects to value types is called

unboxing.

(There are no remarks for this language feature that apply to all runtimes.)

C++/CX supports a shorthand syntax for boxing value types and unboxing reference types. A value type is

boxed when it is assigned to a variable of type Object . An Object variable is unboxed when it is assigned to a

value type variable and the unboxed type is specified in parentheses; that is, when the object variable is cast to a

value type.

Compiler option: /ZW

The following code example boxes and unboxes a DateTime value. First, the example obtains a DateTime value

that represents the current date and time and assigns it to a DateTime variable. Then the DateTime is boxed by

assigning it to an Object variable. Finally, the boxed value is unboxed by assigning it to another DateTime

variable.

To test the example, create a BlankApplication project, replace the BlankPage::OnNavigatedTo() method, and

then specify breakpoints at the closing bracket and the assignment to variable str1 . When the example reaches

the closing bracket, examine str1 .

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/boxing-cpp-component-extensions.md

void BlankPage::OnNavigatedTo(NavigationEventArgs^ e)
{
 using namespace Windows::Globalization::DateTimeFormatting;

 Windows::Foundation::DateTime dt, dtAnother;
 Platform::Object^ obj1;

 Windows::Globalization::Calendar^ c =
 ref new Windows::Globalization::Calendar;
 c->SetToNow();
 dt = c->GetDateTime();
 auto dtf = ref new DateTimeFormatter(
 YearFormat::Full,
 MonthFormat::Numeric,
 DayFormat::Default,
 DayOfWeekFormat::None);
 String^ str1 = dtf->Format(dt);
 OutputDebugString(str1->Data());
 OutputDebugString(L"\r\n");

 // Box the value type and assign to a reference type.
 obj1 = dt;
 // Unbox the reference type and assign to a value type.
 dtAnother = (Windows::Foundation::DateTime) obj1;

 // Format the DateTime for display.
 String^ str2 = dtf->Format(dtAnother);
 OutputDebugString(str2->Data());
}

 Common Language Runtime

 Requirements

 Examples

// vcmcppv2_explicit_boxing2.cpp
// compile with: /clr
using namespace System;

ref class A {
public:
 void func(System::Object^ o){Console::WriteLine("in A");}

For more information, see Boxing (C++/CX).

The compiler boxes value types to Object. This is possible because of a compiler-defined conversion to convert

value types to Object.

Boxing and unboxing enable value types to be treated as objects. Value types, including both struct types and

built-in types such as int, can be converted to and from the type Object.

For more information, see:

How to: Explicitly Request Boxing

How to: Use gcnew to Create Value Types and Use Implicit Boxing

How to: Unbox

Standard Conversions and Implicit Boxing

Compiler option: /clr

The following sample shows how implicit boxing works.

https://docs.microsoft.com/en-us/cpp/cppcx/boxing-c-cx
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-explicitly-request-boxing
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-use-gcnew-to-create-value-types-and-use-implicit-boxing
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-unbox
https://docs.microsoft.com/en-us/cpp/dotnet/standard-conversions-and-implicit-boxing

 void func(System::Object^ o){Console::WriteLine("in A");}
};

value class V {};

interface struct IFace {
 void func();
};

value class V1 : public IFace {
public:
 virtual void func() {
 Console::WriteLine("Interface function");
 }
};

value struct V2 {
 // conversion operator to System::Object
 static operator System::Object^(V2 v2) {
 Console::WriteLine("operator System::Object^");
 return (V2^)v2;
 }
};

void func1(System::Object^){Console::WriteLine("in void func1(System::Object^)");}
void func1(V2^){Console::WriteLine("in func1(V2^)");}

void func2(System::ValueType^){Console::WriteLine("in func2(System::ValueType^)");}
void func2(System::Object^){Console::WriteLine("in func2(System::Object^)");}

int main() {
 // example 1 simple implicit boxing
 Int32^ bi = 1;
 Console::WriteLine(bi);

 // example 2 calling a member with implicit boxing
 Int32 n = 10;
 Console::WriteLine("xx = {0}", n.ToString());

 // example 3 implicit boxing for function calls
 A^ a = gcnew A;
 a->func(n);

 // example 4 implicit boxing for WriteLine function call
 V v;
 Console::WriteLine("Class {0} passed using implicit boxing", v);
 Console::WriteLine("Class {0} passed with forced boxing", (V^)(v)); // force boxing

 // example 5 casting to a base with implicit boxing
 V1 v1;
 IFace ^ iface = v1;
 iface->func();

 // example 6 user-defined conversion preferred over implicit boxing for function-call parameter matching
 V2 v2;
 func1(v2); // user defined conversion from V2 to System::Object preferred over implicit boxing
 // Will call void func1(System::Object^);

 func2(v2); // OK: Calls "static V2::operator System::Object^(V2 v2)"
 func2((V2^)v2); // Using explicit boxing: calls func2(System::ValueType^)
}

1

xx = 10

in A

Class V passed using implicit boxing

Class V passed with forced boxing

Interface function

in func1(V2^)

in func2(System::ValueType^)

in func2(System::ValueType^)

 See also
Component Extensions for .NET and UWP

ref class and ref struct (C++/CLI and C++/CX)
 5/13/2022 • 3 minutes to read • Edit Online

 All Runtimes
 Syntax

class_access ref class name modifier : inherit_access base_type {};
class_access ref struct name modifier : inherit_access base_type {};
class_access value class name modifier : inherit_access base_type {};
class_access value struct name modifier : inherit_access base_type {};

 Parameters

 Remarks

The ref class or ref struct extensions declare a class or struct whose object lifetime is administered

automatically. When the object is no longer accessible or goes out of scope, the memory is released.

class_access

(Optional) The accessibility of the class or struct outside the assembly. Possible values are public and private

(private is the default). Nested classes or structs cannot have a class_access specifier.

name

The name of the class or struct.

modifier

(Optional) abstract and sealed are valid modifiers.

inherit_access

(Optional) The accessibility of base_type. The only permitted accessibility is public (public is the default).

base_type

(Optional) A base type. However, a value type cannot act as a base type.

For more information, see the language-specific descriptions of this parameter in the Windows Runtime and

Common Language Runtime sections.

The default member accessibility of an object declared with ref class or value class is private . And the

default member accessibility of an object declared with ref struct or value struct is public .

When a reference type inherits from another reference type, virtual functions in the base class must explicitly be

overridden (with override) or hidden (with new (new slot in vtable)). The derived class functions must also be

explicitly marked as virtual .

To detect at compile time whether a type is a ref class or ref struct, or a value class or value struct, use

__is_ref_class (type) , __is_value_class (type) , or __is_simple_value_class (type) . For more information, see

Compiler Support for Type Traits.

For more information on classes and structs, see

Instantiating Classes and Structs

C++ Stack Semantics for Reference Types

Classes, Structures, and Unions

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/classes-and-structs-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-define-and-consume-classes-and-structs-cpp-cli
https://docs.microsoft.com/en-us/cpp/dotnet/cpp-stack-semantics-for-reference-types
https://docs.microsoft.com/en-us/cpp/cpp/classes-and-structs-cpp

 Windows Runtime
 Remarks

 Parameters

 Requirements

 Common Language Runtime
 Remarks

 Parameters

 Requirements

 See also

Destructors and finalizers in How to: Define and consume classes and structs (C++/CLI)

User-Defined Operators (C++/CLI)

User-Defined Conversions (C++/CLI)

How to: Wrap Native Class for Use by C#

Generic Classes (C++/CLI)

See Ref classes and structs and Value classes and structs.

base_type

(Optional) A base type. A ref class or ref struct can inherit from zero or more interfaces and zero or one ref

types. A value class or value struct can only inherit from zero or more interfaces.

When you declare an object by using the ref class or ref struct keywords, the object is accessed by a handle to

an object; that is, a reference-counter pointer to the object. When the declared variable goes out of scope, the

compiler automatically deletes the underlying object. When the object is used as a parameter in a call or is

stored in a variable, a handle to the object is actually passed or stored.

When you declare an object by using the value class or value struct keywords, the object lifetime of the

declared object is not supervised. The object is like any other standard C++ class or struct.

Compiler option: /ZW

The following table lists differences from the syntax shown in the All Runtimes section that are specific to

C++/CLI.

base_type

(Optional) A base type. A ref class or ref struct can inherit from zero or more managed interfaces and zero or

one ref types. A value class or value struct can only inherit from zero or more managed interfaces.

The ref class and ref struct keywords tell the compiler that the class or structure is to be allocated on the heap.

When the object is used as a parameter in a call or is stored in a variable, a reference to the object is actually

passed or stored.

The value class and value struct keywords tells the compiler that the value of the allocated class or structure

is passed to functions or stored in members.

Compiler option: /clr

Component Extensions for .NET and UWP

https://docs.microsoft.com/en-us/cpp/dotnet/how-to-define-and-consume-classes-and-structs-cpp-cli
https://docs.microsoft.com/en-us/cpp/dotnet/user-defined-operators-cpp-cli
https://docs.microsoft.com/en-us/cpp/dotnet/user-defined-conversions-cpp-cli
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-wrap-native-class-for-use-by-csharp
https://docs.microsoft.com/en-us/cpp/cppcx/ref-classes-and-structs-c-cx
https://docs.microsoft.com/en-us/cpp/cppcx/value-classes-and-structs-c-cx

Platform, default, and cli Namespaces (C++/CLI
and C++/CX)

 5/13/2022 • 2 minutes to read • Edit Online

 All Runtimes

 Windows Runtime

 Requirements

 Common Language Runtime
 Syntax

using namespace cli;

 Remarks

 Requirements

 Examples

A namespace qualifies the names of language elements so the names do not conflict with otherwise identical

names elsewhere in the source code. For example, a name collision might prevent the compiler from

recognizing Context-Sensitive Keywords. Namespaces are used by the compiler but are not preserved in the

compiled assembly.

Visual Studio provides a default namespace for your project when you create the project. You can manually

rename the namespace, although in C++/CX the name of the .winmd file must match the name of the root

namespace.

For more information, see Namespaces and type visibility (C++/CX).

Compiler option: /ZW

The C++/CLI supports the cli namespace. When compiling with /clr , the using statement in the Syntax

section is implied.

The following language features are in the cli namespace:

Arrays

interior_ptr (C++/CLI)

pin_ptr (C++/CLI)

safe_cast

Compiler option: /clr

The following code example demonstrates that it is possible to use a symbol in the cli namespace as a user-

defined symbol in your code. However, once you have done so, you will have to explicitly or implicitly qualify

your references to the cli language element of the same name.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/platform-default-and-cli-namespaces-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cppcx/namespaces-and-type-visibility-c-cx

// cli_namespace.cpp
// compile with: /clr
using namespace cli;
int main() {
 array<int> ^ MyArray = gcnew array<int>(100);
 int array = 0;

 array<int> ^ MyArray2 = gcnew array<int>(100); // C2062

 // OK
 cli::array<int> ^ MyArray2 = gcnew cli::array<int>(100);
 ::array<int> ^ MyArray3 = gcnew ::array<int>(100);
}

 See also
Component Extensions for .NET and UWP

Compiler Support for Type Traits (C++/CLI and
C++/CX)

 5/13/2022 • 6 minutes to read • Edit Online

 All Runtimes
 Remarks

The Microsoft C++ compiler supports type traits for C++/CLI and C++/CX extensions, which indicate various

characteristics of a type at compile time.

Type traits are especially useful to programmers who write libraries.

The following list contains the type traits that are supported by the compiler. All type traits return false if the

condition specified by the name of the type trait is not met.

(In the following list, code examples are written only in C++/CLI. But the corresponding type trait is also

supported in C++/CX unless stated otherwise. The term, "platform type" refers to either Windows Runtime

types or common language runtime types.)

ref struct R {
void operator=(R% r) {}
};

int main() {
System::Console::WriteLine(__has_assign(R));
}

ref struct R {
R(R% r) {}
};

int main() {
System::Console::WriteLine(__has_copy(R));
}

__has_assign(type)

Returns true if the platform or native type has a copy assignment operator.

__has_copy(type)

Returns true if the platform or native type has a copy constructor.

__has_finalizer(type)

(Not supported in C++/CX.) Returns true if the CLR type has a finalizer. See Destructors and finalizers in

How to: Define and consume classes and structs (C++/CLI) for more information.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/compiler-support-for-type-traits-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-define-and-consume-classes-and-structs-cpp-cli

using namespace System;
ref struct R {
~R() {}
protected:
!R() {}
};

int main() {
Console::WriteLine(__has_finalizer(R));
}

#include <stdio.h>
struct S {
void operator=(S& r) throw() {}
};

int main() {
__has_nothrow_assign(S) == true ?
printf("true\n") : printf("false\n");
}

#include <stdio.h>
struct S {
S() throw() {}
};

int main() {
__has_nothrow_constructor(S) == true ?
printf("true\n") : printf("false\n");
}

#include <stdio.h>
struct S {
S(S& r) throw() {}
};

int main() {
__has_nothrow_copy(S) == true ?
printf("true\n") : printf("false\n");
}

__has_nothrow_assign(type)

Returns true if a copy assignment operator has an empty exception specification.

__has_nothrow_constructor(type)

Returns true if the default constructor has an empty exception specification.

__has_nothrow_copy(type)

Returns true if the copy constructor has an empty exception specification.

__has_trivial_assign(type)

Returns true if the type has a trivial, compiler-generated assignment operator.

#include <stdio.h>
struct S {};

int main() {
__has_trivial_assign(S) == true ?
printf("true\n") : printf("false\n");
}

#include <stdio.h>
struct S {};

int main() {
__has_trivial_constructor(S) == true ?
printf("true\n") : printf("false\n");
}

#include <stdio.h>
struct S {};

int main() {
__has_trivial_copy(S) == true ?
printf("true\n") : printf("false\n");
}

// has_trivial_destructor.cpp
#include <stdio.h>
struct S {};

int main() {
__has_trivial_destructor(S) == true ?
printf("true\n") : printf("false\n");
}

__has_trivial_constructor(type)

Returns true if the type has a trivial, compiler-generated constructor.

__has_trivial_copy(type)

Returns true if the type has a trivial, compiler-generated copy constructor.

__has_trivial_destructor(type)

Returns true if the type has a trivial, compiler-generated destructor.

__has_user_destructor(type)

Returns true if the platform or native type has a user-declared destructor.

// has_user_destructor.cpp

using namespace System;
ref class R {
~R() {}
};

int main() {
Console::WriteLine(__has_user_destructor(R));
}

// has_virtual_destructor.cpp
#include <stdio.h>
struct S {
virtual ~S() {}
};

int main() {
__has_virtual_destructor(S) == true ?
printf("true\n") : printf("false\n");
}

// is_abstract.cpp
#include <stdio.h>
struct S {
virtual void Test() = 0;
};

int main() {
__is_abstract(S) == true ?
printf("true\n") : printf("false\n");
}

__has_virtual_destructor(type)

Returns true if the type has a virtual destructor.

__has_virtual_destructor also works on platform types, and any user-defined destructor in a platform

type is a virtual destructor.

__is_abstract(type)

Returns true if the type is an abstract type. For more information on native abstract types, see Abstract

Classes.

__is_abstract also works for platform types. An interface with at least one member is an abstract type,

as is a reference type with at least one abstract member. For more information on abstract platform types,

see abstract.

__is_base_of(base , derived)

Returns true if the first type is a base class of the second type, or if both types are the same.

__is_base_of also works on platform types. For example, it will return true if the first type is an

interface class and the second type implements the interface.

https://docs.microsoft.com/en-us/cpp/cpp/abstract-classes-cpp

// is_base_of.cpp
#include <stdio.h>
struct S {};
struct T : public S {};

int main() {
__is_base_of(S, T) == true ?
printf("true\n") : printf("false\n");

__is_base_of(S, S) == true ?
printf("true\n") : printf("false\n");
}

#include <stdio.h>
struct S {};

int main() {
__is_class(S) == true ?
printf("true\n") : printf("false\n");
}

#include <stdio.h>
struct S {};
struct T : public S {};

int main() {
S * s = new S;
T * t = new T;
s = t;
__is_convertible_to(T, S) == true ?
printf("true\n") : printf("false\n");
}

delegate void MyDel();
int main() {
System::Console::WriteLine(__is_delegate(MyDel));
}

__is_class(type)

Returns true if the type is a native class or struct.

__is_convertible_to(from , to)

Returns true if the first type can be converted to the second type.

__is_delegate(type)

Returns true if type is a delegate. For more information, see delegate (C++/CLI and C++/CX).

__is_empty(type)

Returns true if the type has no instance data members.

#include <stdio.h>
struct S {
int Test() {}
static int i;
};
int main() {
__is_empty(S) == true ?
printf("true\n") : printf("false\n");
}

// is_enum.cpp
#include <stdio.h>
enum E { a, b };

struct S {
enum E2 { c, d };
};

int main() {
__is_enum(E) == true ?
printf("true\n") : printf("false\n");

__is_enum(S::E2) == true ?
printf("true\n") : printf("false\n");
}

// is_interface_class.cpp

using namespace System;
interface class I {};
int main() {
Console::WriteLine(__is_interface_class(I));
}

#include <stdio.h>
struct S {};

int main() {
__is_pod(S) == true ?
printf("true\n") : printf("false\n");
}

__is_enum(type)

Returns true if the type is a native enum.

__is_interface_class(type)

Returns true if passed a platform interface. For more information, see interface class.

__is_pod(type)

Returns true if the type is a class or union with no constructor or private or protected non-static

members, no base classes, and no virtual functions. See the C++ standard, sections 8.5.1/1, 9/4, and

3.9/10 for more information on PODs.

__is_pod will return false on fundamental types.

__is_polymorphic(type)

#include <stdio.h>
struct S {
virtual void Test(){}
};

int main() {
__is_polymorphic(S) == true ?
printf("true\n") : printf("false\n");
}

using namespace System;
int main() {
array<int>^ x = gcnew array<int>(10);
Console::WriteLine(__is_ref_array(array<int>));
}

using namespace System;
ref class R {};
int main() {
Console::WriteLine(__is_ref_class(Buffer));
Console::WriteLine(__is_ref_class(R));
}

ref class R sealed{};
int main() {
System::Console::WriteLine(__is_sealed(R));
}

Returns true if a native type has virtual functions.

__is_ref_array(type)

Returns true if passed a platform array. For more information, see Arrays.

__is_ref_class(type)

Returns true if passed a reference class. For more information on user-defined reference types, see

Classes and Structs.

__is_sealed(type)

Returns true if passed a platform or native type marked sealed. For more information, see sealed.

__is_simple_value_class(type)

Returns true if passed a value type that contains no references to the garbage-collected heap. For more

information on user-defined value types, see Classes and Structs.

 Windows Runtime
 Remarks

 Requirements

 Common Language Runtime
 Remarks

 Requirements

 Examples

using namespace System;
ref class R {};
value struct V {};
value struct V2 {
R ^ r; // not a simnple value type
};

int main() {
Console::WriteLine(__is_simple_value_class(V));
Console::WriteLine(__is_simple_value_class(V2));
}

#include <stdio.h>
union A {
int i;
float f;
};

int main() {
__is_union(A) == true ?
printf("true\n") : printf("false\n");
}

value struct V {};

int main() {
System::Console::WriteLine(__is_value_class(V));
}

__is_union(type)

Returns true if a type is a union.

__is_value_class(type)

Returns true if passed a value type. For more information on user-defined value types, see Classes and

Structs.

The __has_finalizer(type) type trait is not supported because this platform does not support finalizers.

Compiler option: /ZW

(There are no platform-specific remarks for this feature.)

Compiler option: /clr

Example

// compiler_type_traits.cpp
// compile with: /clr
using namespace System;

template <class T>
ref struct is_class {
 literal bool value = __is_ref_class(T);
};

ref class R {};

int main () {
 if (is_class<R>::value)
 Console::WriteLine("R is a ref class");
 else
 Console::WriteLine("R is not a ref class");
}

R is a ref class

 See also

The following code example shows how to use a class template to expose a compiler type trait for a /clr

compilation. For more information, see Windows Runtime and Managed Templates.

Component Extensions for .NET and UWP

Context-Sensitive Keywords (C++/CLI and C++/CX)
 5/13/2022 • 2 minutes to read • Edit Online

 All Runtimes
 Remarks

 Windows Runtime
 Remarks

 Requirements

 Common Language Runtime
 Remarks

 Requirements

 Examples

Context-sensitive keywords are language elements that are recognized only in specific contexts. Outside the

specific context, a context-sensitive keyword can be a user-defined symbol.

The following is a list of context-sensitive keywords:

abstract

delegate

event

finally

for each, in

initonly

internal

literal

override

property

sealed

where (part of Generics)

For readability purposes, you may want to limit your use of context-sensitive keywords as user-defined symbols.

(There are no platform-specific remarks for this feature.)

Compiler option: /ZW

(There are no platform-specific remarks for this feature.)

Compiler option: /clr

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/context-sensitive-keywords-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/dotnet/finally
https://docs.microsoft.com/en-us/cpp/dotnet/for-each-in
https://docs.microsoft.com/en-us/cpp/dotnet/initonly-cpp-cli

// context_sensitive_keywords.cpp
// compile with: /clr
public ref class C {
 int MyInt;
public:
 C() : MyInt(99) {}

 property int Property_Block { // context-sensitive keyword
 int get() { return MyInt; }
 }
};

int main() {
 int property = 0; // variable name
 C ^ MyC = gcnew C();
 property = MyC->Property_Block;
 System::Console::WriteLine(++property);
}

100

 See also

The following code example shows that in the appropriate context, the property context-sensitive keyword can

be used to define a property and a variable.

Component Extensions for .NET and UWP

delegate (C++/CLI and C++/CX)
 5/13/2022 • 3 minutes to read • Edit Online

 All Runtimes

 Remarks

 Windows Runtime

 Syntax

access
delegate
return-type
delegate-type-identifier
(
[parameters]
)

 Parameters

 Remarks

 Requirements

 Common Language Runtime

Declares a type that represents a function pointer.

Both the Windows Runtime and common language runtime support delegates.

delegate is a context-sensitive keyword. For more information, see Context-Sensitive Keywords.

To detect at compile time if a type is a delegate, use the __is_delegate() type trait. For more information, see

Compiler Support for Type Traits.

C++/CX supports delegates with the following syntax.

access

(optional) The accessibility of the delegate, which can be public (the default) or private . The function

prototype can also be qualified with the const or volatile keywords.

return-type

The return type of the function prototype.

delegate-type-identifier

The name of the declared delegate type.

parameters

(Optional) The types and identifiers of the function prototype.

Use the delegate-type-identifier to declare an event with the same prototype as the delegate. For more

information, see Delegates (C++/CX).

Compiler option: /ZW

The common language runtime supports delegates with the following syntax.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/delegate-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cppcx/delegates-c-cx

 Syntax

access
delegate
function_declaration

 Parameters

 Remarks

 Requirements

access

(optional) The accessibility of the delegate outside of the assembly can be public or private. The default is

private. Inside a class, a delegate can have any accessibility.

function_declaration

The signature of the function that can be bound to the delegate. The return type of a delegate can be any

managed type. For interoperability reasons, it is recommended that the return type of a delegate be a CLS type.

To define an unbound delegate, the first parameter in function_declaration should be the type of the this

pointer for the object.

Delegates are multicast: the "function pointer" can be bound to one or more methods within a managed class.

The delegate keyword defines a multicast delegate type with a specific method signature.

A delegate can also be bound to a method of a value class, such as a static method.

A delegate has the following characteristics:

It inherits from System::MulticastDelegate .

It has a constructor that takes two arguments: a pointer to a managed class or NULL (in the case of

binding to a static method) and a fully qualified method of the specified type.

It has a method called Invoke , whose signature matches the declared signature of the delegate.

When a delegate is invoked, its function(s) are called in the order they were attached.

The return value of a delegate is the return value from its last attached member function.

Delegates cannot be overloaded.

Delegates can be bound or unbound.

When you instantiate a bound delegate, the first argument shall be an object reference. The second argument of

a delegate instantiation shall either be the address of a method of a managed class object, or a pointer to a

method of a value type. The second argument of a delegate instantiation must name the method with the full

class scope syntax and apply the address-of operator.

When you instantiate an unbound delegate, the first argument shall either be the address of a method of a

managed class object, or a pointer to a method of a value type. The argument must name the method with the

full class scope syntax and apply the address-of operator.

When creating a delegate to a static or global function, only one parameter is required: the function (optionally,

the address of the function).

For more information on delegates, see

How to: Define and Use Delegates (C++/CLI)

Generic Delegates (C++/CLI)

https://docs.microsoft.com/en-us/cpp/dotnet/how-to-define-and-use-delegates-cpp-cli

 Examples

// mcppv2_delegate.cpp
// compile with: /clr
using namespace System;

// declare a delegate
public delegate void MyDel(int i);

ref class A {
public:
 void func1(int i) {
 Console::WriteLine("in func1 {0}", i);
 }

 void func2(int i) {
 Console::WriteLine("in func2 {0}", i);
 }

 static void func3(int i) {
 Console::WriteLine("in static func3 {0}", i);
 }
};

int main () {
 A ^ a = gcnew A;

 // declare a delegate instance
 MyDel^ DelInst;

 // test if delegate is initialized
 if (DelInst)
 DelInst(7);

 // assigning to delegate
 DelInst = gcnew MyDel(a, &A::func1);

 // invoke delegate
 if (DelInst)
 DelInst(8);

 // add a function
 DelInst += gcnew MyDel(a, &A::func2);

 DelInst(9);

 // remove a function
 DelInst -= gcnew MyDel(a, &A::func1);

 // invoke delegate with Invoke
 DelInst->Invoke(10);

 // make delegate to static function
 MyDel ^ StaticDelInst = gcnew MyDel(&A::func3);
 StaticDelInst(11);
}

Compiler option: /clr

The following example shows how to declare, initialize, and invoke delegates.

in func1 8

in func1 9

in func2 9

in func2 10

in static func3 11

 See also
Component Extensions for .NET and UWP

enum class (C++/CLI and C++/CX)
 5/13/2022 • 4 minutes to read • Edit Online

 All Runtimes
 Remarks

 Windows Runtime
 Syntax

 access
 enum class
 enumeration-identifier
 [:underlying-type] { enumerator-list } [var];
accessenum structenumeration-identifier[:underlying-type] { enumerator-list } [var];

 Parameters

 Remarks

Declares an enumeration at namespace scope, which is a user-defined type consisting of a set of named

constants called enumerators.

C++/CX and C++/CLI support public enum class and private enum class which are similar to the standard

C++ enum class but with the addition of the accessibility specifier. Under /clr , the C++11 enum class type is

permitted but will generate warning C4472 which is intended to ensure that you really want the ISO enum type

and not the C++/CX and C++/CLI type. For more information about the ISO Standard C++ enum keyword, see

Enumerations.

access

The accessibility of the enumeration, which can be public or private .

enumeration-identifier

The name of the enumeration.

underlying-type

(Optional) The underlying type of the enumeration.

(Optional. Windows Runtime only) The underlying type of the enumeration, which can be bool , char , char16 ,

int16 , uint16 , int , uint32 , int64 , or uint64 .

enumerator-list

A comma-delimited list of enumerator names.

The value of each enumerator is a constant expression that is either defined implicitly by the compiler, or

explicitly by the notation, enumerator = constant-expression. By default, the value of the first enumerator is zero

if it is implicitly defined. The value of each subsequent implicitly-defined enumerator is the value of the previous

enumerator + 1.

var

(Optional) The name of a variable of the enumeration type.

For more information, and examples, see Enums.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/enum-class-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cpp/enumerations-cpp
https://docs.microsoft.com/en-us/cpp/cppcx/enums-c-cx

 Requirements

 Common Language Runtime
 Syntax

 access
 enum class
 name [:type] { enumerator-list } var;
accessenum structname [:type] { enumerator-list } var;

 Parameters

 Remarks

public enum class day {sun, mon };

Note that the compiler emits error messages if the constant expression that defines the value of an enumerator

cannot be represented by the underlying-type. However, the compiler does not report an error for a value that is

inappropriate for the underlying type. For example:

If underlying-type is numeric, and an enumerator specifies the maximum value for that type, the value of

the next implicitly defined enumeration cannot be represented.

If underlying-type is bool , and more than two enumerators are implicitly defined, the enumerators after

the first two cannot be represented.

If underlying-type is char16 , and the enumeration value ranges from 0xD800 through 0xDFFF, the value

can be represented. However, the value logically incorrect because it represents half a Unicode surrogate

pair and should not appear in isolation.

Compiler option: /ZW

access

The accessibility of the enum. Can be either public or private .

enumerator-list

A comma-separated list of the identifiers (enumerators) in the enumeration.

name

The name of the enumeration. Anonymous managed enumerations are not allowed.

type

(Optional) The underlying type of the identifiers. This can be any scalar type, such as signed or unsigned

versions of int , short , or long . bool or char is also allowed.

var

(Optional) The name of a variable of the enumeration type.

enum class and enum struct are equivalent declarations.

There are two types of enums: managed or C++/CX and standard.

A managed or C++/CX enum might be defined as follows,

and is semantically equivalent to:

ref class day {
public:
 static const int sun = 0;
 static const int mon = 1;
};

enum day2 { sun, mon };

static const int sun = 0;
static const int mon = 1;

// mcppv2_enum.cpp
// compile with: /clr
enum E { a, b };
void f(E) {System::Console::WriteLine("hi");}

int main() {
 E myi = b;
 f(myi);
}

void f(int32);

A standard enum might be defined as follows:

and is semantically equivalent to:

Managed enumerator names (identifiers) are not injected into the scope where the enumeration is defined; all

references to the enumerators must be fully qualified (name :: identifier). For this reason, you cannot define an

anonymous managed enum.

The enumerators of a standard enum are strongly injected into the enclosing scope. That is, if there is another

symbol with the same name as an enumerator in the enclosing scope, the compiler will generate an error.

In Visual Studio 2002 and Visual Studio 2003, enumerators were weakly injected (visible in the enclosing scope

unless there was another identifier with the same name).

If a standard C++ enum is defined (without class or struct), compiling with /clr will cause the

enumeration to be compiled as a managed enum. The enumeration still has the semantics of an unmanaged

enumeration. Note, the compiler injects an attribute, Microsoft::VisualC::NativeEnumAttribute to identify a

programmer's intent for the enum to be a native enum. Other compilers will simply see the standard enum as a

managed enum.

A named, standard enum compiled with /clr will be visible in the assembly as a managed enum, and can be

consumed by any other managed compiler. However, an unnamed standard enum will not be publicly visible

from the assembly.

In Visual Studio 2002 and Visual Studio 2003, a standard enum used as the type in a function parameter :

would emit the following in MSIL for the function signature:

However, in current versions of the compiler, the standard enum is emitted as a managed enum with a

[NativeEnumAttribute] and the following in MSIL for the function signature:

void f(E)

 Requirements

 Examples

// mcppv2_enum_2.cpp
// compile with: /clr
// managed enum
public enum class m { a, b };

// standard enum
public enum n { c, d };

// unnamed, standard enum
public enum { e, f } o;

int main()
{
 // consume managed enum
 m mym = m::b;
 System::Console::WriteLine("no automatic conversion to int: {0}", mym);
 System::Console::WriteLine("convert to int: {0}", (int)mym);

 // consume standard enum
 n myn = d;
 System::Console::WriteLine(myn);

 // consume standard, unnamed enum
 o = f;
 System::Console::WriteLine(o);
}

no automatic conversion to int: b

convert to int: 1

1

1

 See also

For more information about native enums, see C++ Enumeration Declarations.

For more information on CLR enums, see:

Underlying Type of an Enum

Compiler option: /clr

Component Extensions for .NET and UWP

https://docs.microsoft.com/en-us/cpp/cpp/enumerations-cpp
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-define-and-consume-enums-in-cpp-cli

event keyword (C++/CLI and C++/CX)
 5/13/2022 • 6 minutes to read • Edit Online

 All Runtimes

 Syntax

// event data member
modifier event delegate^ event_name;

// event block
modifier event delegate^ event_name
{
 modifier return_value add(delegate^ name);
 modifier void remove(delegate^ name);
 modifier void raise(parameters);
}

 Parameters

 Remarks

The event keyword declares an event, which is a notification to registered subscribers (event handlers) that

something of interest has occurred.

C++/CX supports declaring an event member or an event block. An event member is shorthand for declaring an

event block. By default, an event member declares the add , remove , and raise functions that are declared

explicitly in an event block. To customize the functions in an event member, declare an event block instead and

then override the functions that you require.

modifier

A modifier that can be used on either the event declaration or an event accessor method. Possible values are

static and virtual .

delegate

The delegate, whose signature the event handler must match.

event_name

The name of the event.

return_value

The return value of the event accessor method. To be verifiable, the return type must be void .

parameters

(optional) Parameters for the raise method, which match the signature of the delegate parameter.

An event is an association between a delegate and an event handler. An event handler is a member function that

responds when the event gets triggered. It allows clients from any class to register methods that match the

signature and return type of the delegate.

There are two kinds of events declarations:

event data member

The compiler automatically creates storage for the event in the form of a member of the delegate type, and

creates internal add , remove , and raise member functions. An event data member must be declared inside a

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/event-cpp-component-extensions.md

 Windows Runtime
 Remarks

 Requirements

 Common Language Runtime

 Syntax

// event data member
modifier event delegate^ event_name;

// event block
modifier event delegate^ event_name
{
 modifier return_value add(delegate^ name);
 modifier void remove(delegate^ name);
 modifier void raise(parameters);
}

 Parameters

class. The return type of the return type of the delegate must match the return type of the event handler.

event block

An event block enables you to explicitly declare and customize the behavior of the add , remove , and raise

methods.

You can use operator += and operator -= to add and remove an event handler, or call the add and remove

methods explicitly.

event is a context-sensitive keyword. For more information, see Context-sensitive keywords.

For more information, see Events (C++/CX).

To add and later remove an event handler, save the EventRegistrationToken structure that's returned by the add

operation. Then in the remove operation, use the saved EventRegistrationToken structure to identify the event

handler to remove.

Compiler option: /ZW

The event keyword lets you declare an event. An event is a way for a class to provide notifications when

something of interest happens.

modifier

A modifier that can be used on either the event declaration or an event accessor method. Possible values are

static and virtual .

delegate

The delegate, whose signature the event handler must match.

event_name

The name of the event.

return_value

The return value of the event accessor method. To be verifiable, the return type must be void .

parameters

(optional) Parameters for the raise method, which match the signature of the delegate parameter.

https://docs.microsoft.com/en-us/cpp/cppcx/events-c-cx

 Remarks

An event is an association between a delegate and an event handler. An event handler is a member function that

responds when the event gets triggered. It allows clients from any class to register methods that match the

signature and return type of the underlying delegate.

The delegate can have one or more associated methods. These methods get called when your code indicates

that the event has occurred. An event in one program can be made available to other programs that target the

.NET Framework common language runtime.

There are two kinds of event declarations:

event data members

The compiler creates storage for data member events as a member of the delegate type. An event data member

must be declared inside a class. It's also known as a trivial event. See the code sample for an example.

event blocks

Event blocks let you customize the behavior of the add , remove , and raise methods, by implementing add ,

remove , and raise methods. The signature of the add , remove , and raise methods must match the

signature of the delegate. Event block events aren't data members. Any use as a data member generates a

compiler error.

The return type of the event handler must match the return type of the delegate.

In the .NET Framework, you can treat a data member as if it were a method itself (that is, the Invoke method of

its corresponding delegate). To do so, predefine the delegate type for declaring a managed event data member.

In contrast, a managed event method implicitly defines the corresponding managed delegate if it isn't already

defined. See the code sample at the end of this article for an example.

When declaring a managed event, you can specify add and remove accessors that will be called when event

handlers are added or removed using operators += and -= . The add , remove , and raise methods can be

called explicitly.

The following steps must be taken to create and use events in Microsoft C++:

1. Create or identify a delegate. If you're defining your own event, you must also ensure that there's a

delegate to use with the event keyword. If the event is predefined, in the .NET Framework for example,

then consumers of the event need only know the name of the delegate.

2. Create a class that contains:

An event created from the delegate.

(Optional) A method that verifies that an instance of the delegate declared with the event

keyword exists. Otherwise, this logic must be placed in the code that fires the event.

Methods that call the event. These methods can be overrides of some base class functionality.

This class defines the event.

3. Define one or more classes that connect methods to the event. Each of these classes will associate one or

more methods with the event in the base class.

4. Use the event:

Create an object of the class that contains the event declaration.

Create an object of the class that contains the event definition.

For more information on C++/CLI events, see Events in an Interface.

https://docs.microsoft.com/en-us/cpp/dotnet/how-to-use-events-in-cpp-cli

Requirements

 Examples

// mcppv2_events.cpp
// compile with: /clr
using namespace System;

// declare delegates
delegate void ClickEventHandler(int, double);
delegate void DblClickEventHandler(String^);

// class that defines events
ref class EventSource {
public:
 event ClickEventHandler^ OnClick; // declare the event OnClick
 event DblClickEventHandler^ OnDblClick; // declare OnDblClick

 void FireEvents() {
 // raises events
 OnClick(7, 3.14159);
 OnDblClick("Hello");
 }
};

// class that defines methods that will called when event occurs
ref class EventReceiver {
public:
 void OnMyClick(int i, double d) {
 Console::WriteLine("OnClick: {0}, {1}", i, d);
 }

 void OnMyDblClick(String^ str) {
 Console::WriteLine("OnDblClick: {0}", str);
 }
};

int main() {
 EventSource ^ MyEventSource = gcnew EventSource();
 EventReceiver^ MyEventReceiver = gcnew EventReceiver();

 // hook handler to event
 MyEventSource->OnClick += gcnew ClickEventHandler(MyEventReceiver, &EventReceiver::OnMyClick);
 MyEventSource->OnDblClick += gcnew DblClickEventHandler(MyEventReceiver, &EventReceiver::OnMyDblClick);

 // invoke events
 MyEventSource->FireEvents();

 // unhook handler to event
 MyEventSource->OnClick -= gcnew ClickEventHandler(MyEventReceiver, &EventReceiver::OnMyClick);
 MyEventSource->OnDblClick -= gcnew DblClickEventHandler(MyEventReceiver, &EventReceiver::OnMyDblClick);
}

OnClick: 7, 3.14159

OnDblClick: Hello

Compiler option: /clr

The following code example demonstrates declaring pairs of delegates, events, and event handlers. It shows how

to subscribe (add), invoke, and then unsubscribe (remove) the event handlers.

The following code example demonstrates the logic used to generate the raise method of a trivial event. If the

event has one or more subscribers, calling the raise method implicitly or explicitly calls the delegate. If the

// trivial_events.cpp
// compile with: /clr /c
using namespace System;
public delegate int Del();
public ref struct C {
 int i;
 event Del^ MyEvent;

 void FireEvent() {
 i = MyEvent();
 }
};

ref struct EventReceiver {
 int OnMyClick() { return 0; }
};

int main() {
 C c;
 c.i = 687;

 c.FireEvent();
 Console::WriteLine(c.i);
 c.i = 688;

 EventReceiver^ MyEventReceiver = gcnew EventReceiver();
 c.MyEvent += gcnew Del(MyEventReceiver, &EventReceiver::OnMyClick);
 Console::WriteLine(c.i);
}

0

688

 See also

delegate's return type isn't void and if there are zero event subscribers, the raise method returns the default

value for the delegate type. If there are no event subscribers, calling the raise method immediately returns and

no exception is raised. If the delegate return type isn't void , the delegate type is returned.

Component extensions for .NET and UWP

Exception Handling (C++/CLI and C++/CX)
 5/13/2022 • 2 minutes to read • Edit Online

 In This Section

 Related Sections

 See also

Applications compiled with the /ZW compiler option or /clr compiler option both use exceptions to handle

unexpected errors during program execution. The following topics discuss exception handling in either C++/CX

or C++/CLI applications.

Basic Concepts in Using Managed Exceptions

Describes throwing exceptions and using try / catch blocks.

Differences in Exception Handling Behavior Under /clr

Discusses the differences from the standard behavior of C++ exception handling.

finally

Discusses how to use the finally keyword.

How to: Define and Install a Global Exception Handler

Demonstrates how unhandled exceptions can be captured.

How to: Catch Exceptions in Native Code Thrown from MSIL

Discusses how to catch CLR and C++ exceptions in native code.

How to: Define and Install a Global Exception Handler

Demonstrates how to catch all unhandled exceptions.

Exception Handling

Describes exception handling in standard C++.

Component Extensions for .NET and UWP

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/exception-handling-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/dotnet/basic-concepts-in-using-managed-exceptions
https://docs.microsoft.com/en-us/cpp/dotnet/differences-in-exception-handling-behavior-under-clr
https://docs.microsoft.com/en-us/cpp/dotnet/finally
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-define-and-install-a-global-exception-handler
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-catch-exceptions-in-native-code-thrown-from-msil
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-define-and-install-a-global-exception-handler
https://docs.microsoft.com/en-us/cpp/cpp/exception-handling-in-visual-cpp

Explicit Overrides (C++/CLI and C++/CX)
 5/13/2022 • 2 minutes to read • Edit Online

 All Runtimes
 Syntax

overriding-function-declarator = type::function [,type::function] { overriding-function-definition }
overriding-function-declarator = function { overriding-function-definition }

 Parameters

 Remarks

 Windows Runtime
 Requirements

 Common Language Runtime
 Remarks

 Requirements

 Examples

This topic discusses how to explicitly override a member of a base class or interface. A named (explicit) override

should only be used to override a method with a derived method that has a different name.

overriding-function-declarator

The return type, name, and argument list of the overriding function. Note that the overriding function does not

have to have the same name as the function being overridden.

type

The base type that contains a function to override.

function

A comma-delimited list of one or more function names to override.

overriding-function-definition

The function body statements that define the overriding function.

Use explicit overrides to create an alias for a method signature, or to provide different implementations for

methods with the same signature.

For information about modifying the behavior of inherited types and inherited type members, see Override

Specifiers.

Compiler option: /ZW

For information about explicit overrides in native code or code compiled with /clr:oldSyntax , see Explicit

Overrides.

Compiler option: /clr

The following code example shows a simple, implicit override and implementation of a member in a base

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/explicit-overrides-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cpp/explicit-overrides-cpp

// explicit_override_1.cpp
// compile with: /clr
interface struct I1 {
 virtual void f();
};

ref class X : public I1 {
public:
 virtual void f() {
 System::Console::WriteLine("X::f override of I1::f");
 }
};

int main() {
 I1 ^ MyI = gcnew X;
 MyI -> f();
}

X::f override of I1::f

// explicit_override_2.cpp
// compile with: /clr
interface struct I1 {
 virtual void f();
};

interface struct I2 {
 virtual void f();
};

ref struct X : public I1, I2 {
 virtual void f() = I1::f, I2::f {
 System::Console::WriteLine("X::f override of I1::f and I2::f");
 }
};

int main() {
 I1 ^ MyI = gcnew X;
 I2 ^ MyI2 = gcnew X;
 MyI -> f();
 MyI2 -> f();
}

X::f override of I1::f and I2::f
X::f override of I1::f and I2::f

interface, not using explicit overrides.

The following code example shows how to implement all interface members with a common signature, using

explicit override syntax.

The following code example shows how a function override can have a different name from the function it is

implementing.

// explicit_override_3.cpp
// compile with: /clr
interface struct I1 {
 virtual void f();
};

ref class X : public I1 {
public:
 virtual void g() = I1::f {
 System::Console::WriteLine("X::g");
 }
};

int main() {
 I1 ^ a = gcnew X;
 a->f();
}

X::g

// explicit_override_4.cpp
// compile with: /clr /LD
using namespace System;
ref class R : ICloneable {
 int X;

 virtual Object^ C() sealed = ICloneable::Clone {
 return this->Clone();
 }

public:
 R() : X(0) {}
 R(int x) : X(x) {}

 virtual R^ Clone() {
 R^ r = gcnew R;
 r->X = this->X;
 return r;
 }
};

 See also

The following code example shows an explicit interface implementation that implements a type safe collection.

Component Extensions for .NET and UWP

ref new, gcnew (C++/CLI and C++/CX)
 5/13/2022 • 2 minutes to read • Edit Online

 All Runtimes

 Windows Runtime

 Requirements

 Common Language Runtime

 Requirements

 Examples

// mcppv2_gcnew_1.cpp
// compile with: /clr
ref struct Message {
 System::String^ sender;
 System::String^ receiver;
 System::String^ data;
};

int main() {
 Message^ h_Message = gcnew Message;
 //...
}

The ref new aggregate keyword allocates an instance of a type that is garbage collected when the object

becomes inaccessible, and that returns a handle (^) to the allocated object.

Memory for an instance of a type that is allocated by ref new is deallocated automatically.

A ref new operation throws OutOfMemoryException if it is unable to allocate memory.

For more information about how memory for native C++ types is allocated and deallocated, see the new and

delete operators.

Use ref new to allocate memory for Windows Runtime objects whose lifetime you want to administer

automatically. The object is automatically deallocated when its reference count goes to zero, which occurs after

the last copy of the reference has gone out of scope. For more information, see Ref classes and structs.

Compiler option: /ZW

Memory for a managed type (reference or value type) is allocated by gcnew , and deallocated by using garbage

collection.

Compiler option: /clr

The following example uses gcnew to allocate a Message object.

The following example uses gcnew to create a boxed value type for use like a reference type.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/ref-new-gcnew-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cpp/new-and-delete-operators
https://docs.microsoft.com/en-us/cpp/cppcx/ref-classes-and-structs-c-cx

// example2.cpp : main project file.
// compile with /clr
using namespace System;
value class Boxed {
 public:
 int i;
};
int main()
{
 Boxed^ y = gcnew Boxed;
 y->i = 32;
 Console::WriteLine(y->i);
 return 0;
}

32

 See also
Component Extensions for .NET and UWP

Generics (C++/CLI and C++/CX)
 5/13/2022 • 2 minutes to read • Edit Online

 In This Section
 Supported by the Windows Runtime and the Common Language Runtime

 Supported by the Common Language Runtime

 Related Sections

 See also

Generics are parameterized types and methods. In this section, find out which generic features both the

Windows Runtime and the common language runtime support, and which ones only the common language

runtime supports. You'll also find out how to author your own generic methods and types in C++/CLI, and how

to use generic types authored in a .NET Framework language in C++/CLI. Finally, this section provides a

comparison of generics and C++ templates.

Overview of Generics in C++/CLI

Information about what generics are, the motivation for the language feature, and definitions of terms that are

used to describe generics. Also, information about the use of reference types and value types as type parameters

for generics.

Generic Interfaces (C++/CLI)

Information about defining and using generic interfaces.

Generic Delegates (C++/CLI)

Information about defining and using generic delegates.

Constraints on Generic Type Parameters (C++/CLI)

Information about using constraints in generic types.

Consuming Generics (C++/CLI)

Information about using generics defined in .NET assemblies, possibly authored in other languages, in C++/CLI.

Generics and Templates (C++/CLI)

A comparison of generics and templates, when to use each, and how to combine them usefully.

Generic Functions (C++/CLI)

Information about defining and using generic functions and methods.

Generic Classes (C++/CLI)

Information about defining and using generic classes.

Using the for each, in keyword on a generic collection.

Component Extensions for .NET and UWP

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/generics-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/dotnet/for-each-in

Overview of Generics in C++/CLI
 5/13/2022 • 6 minutes to read • Edit Online

 Why Generics?

 Generic Functions and Types

Generics are parameterized types supported by the common language runtime. A parameterized type is a type

that is defined with an unknown type parameter that is specified when the generic is used.

C++ supports templates and both templates and generics support parameterized types to create typed

collection classes. However, templates provide compile-time parameterization. You cannot reference an

assembly containing a template definition and create new specializations of the template. Once compiled, a

specialized template looks like any other class or method. In contrast, generics are emitted in MSIL as a

parameterized type known by the runtime to be a parameterized type; source code that references an assembly

containing a generic type can create specializations of the generic type. For more information on the

comparison of standard C++ templates and generics, see Generics and Templates (C++/CLI).

Class types, as long as they are managed types, may be generic. An example of this might be a List class. The

type of an object in the list would be the type parameter. If you needed a List class for many different types of

objects, before generics you might have used a List that takes System::Object as the item type. But that would

allow any object (including objects of the wrong type) to be used in the list. Such a list would be called an

untyped collection class. At best, you could check the type at runtime and throw an exception. Or, you might

have used a template, which would lose its generic quality once compiled into an assembly. Consumers of your

assembly could not create their own specializations of the template. Generics allow you to create typed

collection classes, say List<int> (read as "List of int") and List<double> ("List of double") which would

generate a compile-time error if you tried to put a type that the collection was not designed to accept into the

typed collection. In addition, these types remain generic after they are compiled.

A description of the syntax of generic classes may be found in Generic Classes (C++/CLI). A new namespace,

System.Collections.Generic, introduces a set of parameterized collection types including

Dictionary<TKey,TValue>, List<T> and LinkedList<T>.

Both instance and static class member functions, delegates, and global functions may also be generic. Generic

functions may be necessary if the function's parameters are of an unknown type, or if the function itself must

work with generic types. In many cases where System::Object may have been used in the past as a parameter

for an unknown object type, a generic type parameter may be used instead, allowing for more type-safe code.

Any attempt to pass in a type that the function was not designed for would be flagged as an error at compile

time. Using System::Object as a function parameter, the inadvertent passing of an object that the function

wasn't intended to deal with would not be detected, and you would have to cast the unknown object type to a

specific type in the function body, and account for the possibility of an InvalidCastException. With a generic, code

attempting to pass an object to the function would cause a type conflict so the function body is guaranteed to

have the correct type.

The same benefits apply to collection classes built on generics. Collection classes in the past would use

System::Object to store elements in a collection. Insertion of objects of a type that the collection was not

designed for was not flagged at compile time, and often not even when the objects were inserted. Usually, an

object would be cast to some other type when it was accessed in the collection. Only when the cast failed would

the unexpected type be detected. Generics solves this problem at compile time by detecting any code that

inserts a type that doesn't match (or implicitly convert to) the type parameter of the generic collection.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/overview-of-generics-in-visual-cpp.md
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.linkedlist-1

 Terminology Used With Generics
 Type Parameters

 Type Arguments

 Constructed Type

// generics_overview.cpp
// compile with: /clr /c
generic <typename T>

ref class List {};

generic <typename T>

ref class Queue : public List<T> {};

 Constraint

 Reference Types and Value Types

For a description of the syntax, see Generic Functions (C++/CLI).

A generic declaration contains one or more unknown types known as type parameters. Type parameters are

given a name which stands for the type within the body of the generic declaration. The type parameter is used

as a type within the body of the generic declaration. The generic declaration for List<T> contains the type

parameter T.

The type argument is the actual type used in place of the type parameter when the generic is specialized for a

specific type or types. For example, int is the type argument in List<int> . Value types and handle types are

the only types allowed in as a generic type argument.

A type constructed from a generic type is referred to as a constructed type. A type not fully specified, such as

List<T> is an open constructed type; a type fully specified, such as List<double>, is a closed constructed type

or specialized type. Open constructed types may be used in the definition of other generic types or methods and

may not be fully specified until the enclosing generic is itself specified. For example, the following is a use of an

open constructed type as a base class for a generic:

A constraint is a restriction on the types that may be used as a type parameter. For example, a given generic

class could accept only classes that inherit from a specified class, or implement a specified interface. For more

information, see Constraints on Generic Type Parameters (C++/CLI).

Handles types and value types may be used as type arguments. In the generic definition, in which either type

may be used, the syntax is that of reference types. For example, the -> operator is used to access members of

the type of the type parameter whether or not the type eventually used is a reference type or a value type. When

a value type is used as the type argument, the runtime generates code that uses the value types directly without

boxing the value types.

When using a reference type as a generic type argument, use the handle syntax. When using a value type as a

generic type argument, use the name of the type directly.

// generics_overview_2.cpp
// compile with: /clr
generic <typename T>

ref class GenericType {};
ref class ReferenceType {};

value struct ValueType {};

int main() {
 GenericType<ReferenceType^> x;
 GenericType<ValueType> y;
}

 Type Parameters

// generics_overview_3.cpp
// compile with: /clr
interface class I {
 void f1();
 void f2();
};

ref struct R : public I {
 virtual void f1() {}
 virtual void f2() {}
 virtual void f3() {}
};

generic <typename T>
where T : I
void f(T t) {
 t->f1();
 t->f2();
 safe_cast<R^>(t)->f3();
}

int main() {
 f(gcnew R());
}

Type parameters in a generic class are treated like other identifiers. However, because the type is not known,

there are restrictions on their use. For example, you cannot use members and methods of the type parameter

class unless the type parameter is known to support these members. That is, to access a member through the

type parameter, you must add the type that contains the member to the type parameter's constraint list.

These restrictions apply to operators as well. An unconstrained generic type parameter may not use the == and

!= operators to compare two instances of the type parameter, in case the type does not support these

operators. These checks are necessary for generics, but not for templates, because generics may be specialized

at runtime with any class that satisfies the constraints, when it is too late to check for the use of invalid

members.

A default instance of the type parameter may be created by using the () operator. For example:

T t = T();

where T is a type parameter in a generic class or method definition, initializes the variable to its default value. If

T is a ref class it will be a null pointer ; if T is a value class, the object is initialized to zero. This is called a

default initializer.

See also
Generics

Generic functions (C++/CLI)
 5/13/2022 • 3 minutes to read • Edit Online

 All platforms
 Remarks

 Windows Runtime
 Remarks

 Requirements

 Common Language Runtime

 Syntax

[attributes] [modifiers]
return-type identifier<type-parameter-identifier-list>
[type-parameter-constraints-clauses]

([formal-parameters])
{function-body}

 Parameters

A generic function is a function that is declared with type parameters. When called, actual types are used instead

of the type parameters.

This feature doesn't apply to all platforms.

This feature isn't supported in the Windows Runtime.

Compiler option: /ZW

A generic function is a function that's declared with type parameters. When called, actual types are used instead

of the type parameters.

attributes

(Optional) Additional declarative information. For more information on attributes and attribute classes, see

attributes.

modifiers

(Optional) A modifier for the function, such as static . virtual isn't allowed since virtual methods may not be

generic.

return-type

The type returned by the method. If the return type is void, no return value is required.

identifier

The function name.

type-parameter-identifier-list

Comma-separated identifiers list.

formal-parameters

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/generic-functions-cpp-cli.md
https://docs.microsoft.com/en-us/cpp/cppcx/attributes-c-cx

 Remarks

 Requirements

 Examples

// generics_generic_function_1.cpp
// compile with: /clr
generic <typename ItemType>
void G(int i) {}

ref struct A {
 generic <typename ItemType>
 void G(ItemType) {}

 generic <typename ItemType>
 static void H(int i) {}
};

int main() {
 A myObject;

 // generic function call
 myObject.G<int>(10);

 // generic function call with type parameters deduced
 myObject.G(10);

 // static generic function call
 A::H<int>(10);

 // global generic function call
 G<int>(10);
}

(Optional) Parameter list.

type-parameter-constraints-clauses

This set specifies restrictions on the types that may be used as type arguments, and takes the form specified in

Constraints on Generic Type Parameters (C++/CLI).

function-body

The body of the method, which may refer to the type parameter identifiers.

Generic functions are functions declared with a generic type parameter. They may be methods in a class or

struct , or standalone functions. A single generic declaration implicitly declares a family of functions that differ

only in the substitution of a different actual type for the generic type parameter.

A class or struct constructor may not be declared with generic type parameters.

When called, the generic type parameter is replaced by an actual type. The actual type may be explicitly specified

in angled brackets using syntax similar to a template function call. If called without the type parameters, the

compiler will attempt to deduce the actual type from the parameters supplied in the function call. The compiler

reports an error if the intended type argument cannot be deduced from the parameters used.

Compiler option: /clr

The following code sample demonstrates a generic function.

Generic functions can be overloaded based on signature or arity, the number of type parameters on a function.

Also, generic functions can be overloaded with non-generic functions of the same name, as long as the functions

differ in some type parameters. For example, the following functions can be overloaded:

// generics_generic_function_2.cpp
// compile with: /clr /c
ref struct MyClass {
 void MyMythod(int i) {}

 generic <class T>
 void MyMythod(int i) {}

 generic <class T, class V>
 void MyMythod(int i) {}
};

// generics_generic_function_3.cpp
// compile with: /clr
using namespace System;

ref class MyBaseClass {
protected:
 generic <class ItemType>
 ItemType MyBaseClassFunction(ItemType item) {
 return item;
 }
};

ref class MyClass: public MyBaseClass {
public:
 generic <class ItemType>
 ItemType MyFunction(ItemType item) {
 return MyBaseClass::MyBaseClassFunction<ItemType>(item);
 }
};

int main() {
 MyClass^ myObj = gcnew MyClass();

 // Call MyFunction using an int.
 Console::WriteLine("My function returned an int: {0}",
 myObj->MyFunction<int>(2003));

 // Call MyFunction using a string.
 Console::WriteLine("My function returned a string: {0}",
 myObj->MyFunction<String^>("Hello generic functions!"));
}

My function returned an int: 2003
My function returned a string: Hello generic functions!

 See also

The following example uses a generic function to find the first element in an array. It declares MyClass , which

inherits from the base class MyBaseClass . MyClass contains a generic function, MyFunction , which calls another

generic function, MyBaseClassFunction , within the base class. In main , the generic function, MyFunction , is called

using different type arguments.

Component Extensions for .NET and UWP

Generics

Generic Classes (C++/CLI)
 5/13/2022 • 13 minutes to read • Edit Online

 Syntax

[attributes]
generic <class-key type-parameter-identifier(s)>
[constraint-clauses]
[accessibility-modifiers] ref class identifier [modifiers]
[: base-list]
{
class-body
} [declarators] [;]

 Remarks

A generic class is declared using the following form:

In the above syntax, the following terms are used:

attributes

(Optional) Additional declarative information. For more information on attributes and attribute classes, see

Attributes.

class-key

Either class or typename

type-parameter-identifier(s), Comma-separated list of identifiers specifying the names of the type parameters.

constraint-clauses

A list (not comma-separated) of where clauses specifying the constraints for the type parameters. Takes the

form:

where type-parameter-identifier : constraint-list ...

constraint-list

class-or-interface[, ...]

accessibility-modifiers

Accessibility modifiers for the generic class. For the Windows Runtime, the only allowed modifier is private .

For the common language runtime, the allowed modifiers are private and public .

identifier

The name of the generic class, any valid C++ identifier.

modifiers

(Optional) Allowed modifiers include sealed and abstract.

base-list

A list that contains the one base class and any implemented interfaces, all separated by commas.

class-body

The body of the class, containing fields, member functions, etc.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/generic-classes-cpp-cli.md

// generic_classes_1.cpp
// compile with: /clr
using namespace System;
generic <typename ItemType>
ref struct Stack {
 // ItemType may be used as a type here
 void Add(ItemType item) {}
};

generic <typename KeyType, typename ValueType>
ref class HashTable {};

// The keyword class may be used instead of typename:
generic <class ListItem>
ref class List {};

int main() {
 HashTable<int, Decimal>^ g1 = gcnew HashTable<int, Decimal>();
}

// generic_classes_2.cpp
// compile with: /clr /c
interface class IItem {};
generic <class ItemType>
where ItemType : IItem
ref class Stack {};

declarators

Declarations of any variables of this type. For example: ^ identifier[, ...]

You can declare generic classes such as these (note that the keyword class may be used instead of typename).

In this example, ItemType , KeyType and ValueType are unknown types that are specified at the point where the

type. HashTable<int, int> is a constructed type of the generic type HashTable<KeyType, ValueType> . A number of

different constructed types can be constructed from a single generic type. Constructed types constructed from

generic classes are treated like any other ref class type.

Both value types (either built-in types such as int or double , or user-defined value types) and reference types

may be used as a generic type argument. The syntax within the generic definition is the same regardless.

Syntactically, the unknown type is treated as if it were a reference type. However, the runtime is able to

determine that if the type actually used is a value type and substitute the appropriate generated code for direct

access to members. Value types used as generic type arguments are not boxed and so do not suffer the

performance penalty associated with boxing. The syntax used within the body of the generic should be T^ and

-> instead of . . Any use of ref new, gcnew for the type parameter will be appropriately interpreted by the

runtime as the simple creation of a value type if the type argument is a value type.

You can also declare a generic class with Constraints on Generic Type Parameters (C++/CLI) on the types that

can be used for the type parameter. In the following example any type used for ItemType must implement the

IItem interface. Attempting to use int , for example, which does not implement IItem , would produce a

compile-time error because the type argument does not satisfy the constraint.

Generic classes in the same namespace cannot be overloaded by only changing the number or the types of type

parameters. However, if each class lives in a different namespace, they can be overloaded. For example, consider

the following two classes, MyClass and MyClass<ItemType> , in the namespaces A and B . The two classes can

then be overloaded in a third namespace C:

// generic_classes_3.cpp
// compile with: /clr /c
namespace A {
 ref class MyClass {};
}

namespace B {
 generic <typename ItemType>
 ref class MyClass2 { };
}

namespace C {
 using namespace A;
 using namespace B;

 ref class Test {
 static void F() {
 MyClass^ m1 = gcnew MyClass(); // OK
 MyClass2<int>^ m2 = gcnew MyClass2<int>(); // OK
 }
 };
}

// generic_classes_4.cpp
// compile with: /clr /c
generic <typename ItemType>
interface class IInterface {};

generic <typename ItemType>
ref class MyClass : IInterface<ItemType> {};

 Fields in Generic Classes

 Instance Variables

 Example: Different generic classes

The base class and base interfaces cannot be type parameters. However, the base class can involve the type

parameter as an argument, as in the following case:

Constructors and destructors are executed once for each object instance (as usual); static constructors are

executed once for each constructed type.

This section demonstrates the use of instance and static fields in generic classes.

Instance variables of a generic class can have types and variable initializers that include any type parameters

from the enclosing class.

In the following example, three different instances of the generic class, MyClass<ItemType>, are created by

using the appropriate type arguments (int , double , and str ing).

// generics_instance_fields1.cpp
// compile with: /clr
// Instance fields on generic classes
using namespace System;

generic <typename ItemType>
ref class MyClass {
// Field of the type ItemType:
public :
 ItemType field1;
 // Constructor using a parameter of the type ItemType:
 MyClass(ItemType p) {
 field1 = p;
 }
};

int main() {
 // Instantiate an instance with an integer field:
 MyClass<int>^ myObj1 = gcnew MyClass<int>(123);
 Console::WriteLine("Integer field = {0}", myObj1->field1);

 // Instantiate an instance with a double field:
 MyClass<double>^ myObj2 = gcnew MyClass<double>(1.23);
 Console::WriteLine("Double field = {0}", myObj2->field1);

 // Instantiate an instance with a String field:
 MyClass<String^>^ myObj3 = gcnew MyClass<String^>("ABC");
 Console::WriteLine("String field = {0}", myObj3->field1);
 }

Integer field = 123
Double field = 1.23
String field = ABC

 Static Variables

 Example: Use static variables

On the creation of a new generic type, new instances of any static variables are created and any static

constructor for that type is executed.

Static variables can use any type parameters from the enclosing class.

The following example demonstrates using static fields and a static constructor within a generic class.

// generics_static2.cpp
// compile with: /clr
using namespace System;

interface class ILog {
 void Write(String^ s);
};

ref class DateTimeLog : ILog {
public:
 virtual void Write(String^ s) {
 Console::WriteLine("{0}\t{1}", DateTime::Now, s);
 }
};

ref class PlainLog : ILog {
public:
 virtual void Write(String^ s) { Console::WriteLine(s); }
};

generic <typename LogType>
where LogType : ILog
ref class G {
 static LogType s_log;

public:
 G(){}
 void SetLog(LogType log) { s_log = log; }
 void F() { s_log->Write("Test1"); }
 static G() { Console::WriteLine("Static constructor called."); }
};

int main() {
 G<PlainLog^>^ g1 = gcnew G<PlainLog^>();
 g1->SetLog(gcnew PlainLog());
 g1->F();

 G<DateTimeLog^>^ g2 = gcnew G<DateTimeLog^>();
 g2->SetLog(gcnew DateTimeLog());

 // prints date
 // g2->F();
}

Static constructor called.
Static constructor called.
Static constructor called.
Test1

 Methods in Generic Classes

 Non-Generic Methods in Generic Classes

Methods in generic classes can be generic themselves; non-generic methods will be implicitly parameterized by

the class type parameter.

The following special rules apply to methods within generic classes:

Methods in generic classes can use type parameters as parameters, return types, or local variables.

Methods in generic classes can use open or closed constructed types as parameters, return types, or local

variables.

 Example: Declare non-generic method

// generics_non_generic_methods1.cpp
// compile with: /clr
// Non-generic methods within a generic class.
using namespace System;

generic <typename ItemType>
ref class MyClass {
public:
 String^ name;
 ItemType data;

 MyClass(ItemType x) {
 data = x;
 }

 // Non-generic method using the type parameter:
 virtual void ProtectData(MyClass<ItemType>^ x) {
 data = x->data;
 }
};

// ItemType defined as String^
ref class MyMainClass: MyClass<String^> {
public:
 // Passing "123.00" to the constructor:
 MyMainClass(): MyClass<String^>("123.00") {
 name = "Jeff Smith";
 }

 virtual void ProtectData(MyClass<String^>^ x) override {
 x->data = String::Format("${0}**", x->data);
 }

 static void Main() {
 MyMainClass^ x1 = gcnew MyMainClass();

 x1->ProtectData(x1);
 Console::WriteLine("Name: {0}", x1->name);
 Console::WriteLine("Amount: {0}", x1->data);
 }
};

int main() {
 MyMainClass::Main();
}

Methods in generic classes that have no additional type parameters are usually referred to as non-generic

although they are implicitly parameterized by the enclosing generic class.

The signature of a non-generic method can include one or more type parameters of the enclosing class, either

directly or in an open constructed type. For example:

void MyMethod(MyClass<ItemType> x) {}

The body of such methods can also use these type parameters.

The following example declares a non-generic method, ProtectData , inside a generic class, MyClass<ItemType> .

The method uses the class type parameter ItemType in its signature in an open constructed type.

Name: Jeff Smith
Amount: $123.00**

 Generic Methods in Generic Classes

 Example: Declare generic and non-generic methods

// generics_method2.cpp
// compile with: /clr /c
generic <typename Type1>
ref class G {
public:
 // Generic method having a type parameter
 // from the class, Type1, and its own type
 // parameter, Type2
 generic <typename Type2>
 void Method1(Type1 t1, Type2 t2) { F(t1, t2); }

 // Non-generic method:
 // Can use the class type param, Type1, but not Type2.
 void Method2(Type1 t1) { F(t1, t1); }

 void F(Object^ o1, Object^ o2) {}
};

 Example: Declare and use generic methods

You can declare generic methods in both generic and non-generic classes. For example:

The non-generic method is still generic in the sense that it is parameterized by the class's type parameter, but it

has no additional type parameters.

All types of methods in generic classes can be generic, including static, instance, and virtual methods.

The following example demonstrates declaring and using generic methods within generic classes:

// generics_generic_method2.cpp
// compile with: /clr
using namespace System;
generic <class ItemType>
ref class MyClass {
public:
 // Declare a generic method member.
 generic <class Type1>
 String^ MyMethod(ItemType item, Type1 t) {
 return String::Concat(item->ToString(), t->ToString());
 }
};

int main() {
 // Create instances using different types.
 MyClass<int>^ myObj1 = gcnew MyClass<int>();
 MyClass<String^>^ myObj2 = gcnew MyClass<String^>();
 MyClass<String^>^ myObj3 = gcnew MyClass<String^>();

 // Calling MyMethod using two integers.
 Console::WriteLine("MyMethod returned: {0}",
 myObj1->MyMethod<int>(1, 2));

 // Calling MyMethod using an integer and a string.
 Console::WriteLine("MyMethod returned: {0}",
 myObj2->MyMethod<int>("Hello #", 1));

 // Calling MyMethod using two strings.
 Console::WriteLine("MyMethod returned: {0}",
 myObj3->MyMethod<String^>("Hello ", "World!"));

 // generic methods can be called without specifying type arguments
 myObj1->MyMethod<int>(1, 2);
 myObj2->MyMethod<int>("Hello #", 1);
 myObj3->MyMethod<String^>("Hello ", "World!");
}

MyMethod returned: 12
MyMethod returned: Hello #1
MyMethod returned: Hello World!

 Using Nested Types in Generic Classes

// generic_classes_5.cpp
// compile with: /clr /c
generic <typename ItemType>
ref struct Outer {
 ref class Inner {};
};

Just as with ordinary classes, you can declare other types inside a generic class. The nested class declaration is

implicitly parameterized by the type parameters of the outer class declaration. Thus, a distinct nested class is

defined for each constructed outer type. For example, in the declaration,

The type Outer<int>::Inner is not the same as the type Outer<double>::Inner .

As with generic methods in generic classes, additional type parameters can be defined for the nested type. If you

use the same type parameter names in the inner and outer class, the inner type parameter will hide the outer

type parameter.

// generic_classes_6.cpp
// compile with: /clr /c
generic <typename ItemType>
ref class Outer {
 ItemType outer_item; // refers to outer ItemType

 generic <typename ItemType>
 ref class Inner {
 ItemType inner_item; // refers to Inner ItemType
 };
};

 Example: Build and read linked list

// generics_linked_list.cpp
// compile with: /clr
using namespace System;
generic <class ItemType>
ref class LinkedList {
// The node class:
public:
 ref class Node {
 // The link field:
 public:
 Node^ next;
 // The data field:
 ItemType item;
 } ^first, ^current;
};

ref class ListBuilder {
public:
 void BuildIt(LinkedList<double>^ list) {
 /* Build the list */
 double m[5] = {0.1, 0.2, 0.3, 0.4, 0.5};
 Console::WriteLine("Building the list:");

 for (int n=0; n<=4; n++) {
 // Create a new node:
 list->current = gcnew LinkedList<double>::Node();

 // Assign a value to the data field:
 list->current->item = m[n];

 // Set the link field "next" to be the same as
 // the "first" field:
 list->current->next = list->first;

 // Redirect "first" to the new node:
 list->first = list->current;

 // Display node's data as it builds:
 Console::WriteLine(list->current->item);
 }
 }

 void ReadIt(LinkedList<double>^ list) {

Since there is no way to refer to the outer type parameter, the compiler will produce a warning in this situation.

When constructed nested generic types are named, the type parameter for the outer type is not included in the

type parameter list for the inner type, even though the inner type is implicitly parameterized by the outer type's

type parameter. In the above case, a name of a constructed type would be Outer<int>::Inner<string> .

The following example demonstrates building and reading a linked list using nested types in generic classes.

 void ReadIt(LinkedList<double>^ list) {
 // Read the list
 // Make "first" the "current" link field:
 list->current = list->first;
 Console::WriteLine("Reading nodes:");

 // Read nodes until current == null:
 while (list->current != nullptr) {
 // Display the node's data field:
 Console::WriteLine(list->current->item);

 // Move to the next node:
 list->current = list->current->next;
 }
 }
};

int main() {
 // Create a list:
 LinkedList<double>^ aList = gcnew LinkedList<double>();

 // Initialize first node:
 aList->first = nullptr;

 // Instantiate the class, build, and read the list:
 ListBuilder^ myListBuilder = gcnew ListBuilder();
 myListBuilder->BuildIt(aList);
 myListBuilder->ReadIt(aList);
}

Building the list:
0.1
0.2
0.3
0.4
0.5
Reading nodes:
0.5
0.4
0.3
0.2
0.1

 Properties, Events, Indexers and Operators in Generic Classes

 Example: Declare instance property

public ItemType MyProperty {}

Properties, events, indexers and operators can use the type parameters of the enclosing generic class as

return values, parameters, or local variables, such as when ItemType is a type parameter of a class:

Properties, events, indexers and operators cannot themselves be parameterized.

This example shows declarations of an instance property within a generic class.

// generics_generic_properties1.cpp
// compile with: /clr
using namespace System;

generic <typename ItemType>
ref class MyClass {
private:
 property ItemType myField;

public:
 property ItemType MyProperty {
 ItemType get() {
 return myField;
 }
 void set(ItemType value) {
 myField = value;
 }
 }
};

int main() {
 MyClass<String^>^ c = gcnew MyClass<String^>();
 MyClass<int>^ c1 = gcnew MyClass<int>();

 c->MyProperty = "John";
 c1->MyProperty = 234;

 Console::Write("{0}, {1}", c->MyProperty, c1->MyProperty);
}

John, 234

 Example: Generic class with event
The next example shows a generic class with an event.

// generics_generic_with_event.cpp
// compile with: /clr
// Declare a generic class with an event and
// invoke events.
using namespace System;

// declare delegates
generic <typename ItemType>
delegate void ClickEventHandler(ItemType);

// generic class that defines events
generic <typename ItemType>
ref class EventSource {
public:
 // declare the event OnClick
 event ClickEventHandler<ItemType>^ OnClick;
 void FireEvents(ItemType item) {
 // raises events
 OnClick(item);
 }
};

// generic class that defines methods that will called when
// event occurs
generic <typename ItemType>
ref class EventReceiver {
public:
 void OnMyClick(ItemType item) {
 Console::WriteLine("OnClick: {0}", item);
 }
};

int main() {
 EventSource<String^>^ MyEventSourceString =
 gcnew EventSource<String^>();
 EventSource<int>^ MyEventSourceInt = gcnew EventSource<int>();
 EventReceiver<String^>^ MyEventReceiverString =
 gcnew EventReceiver<String^>();
 EventReceiver<int>^ MyEventReceiverInt = gcnew EventReceiver<int>();

 // hook handler to event
 MyEventSourceString->OnClick += gcnew ClickEventHandler<String^>(
 MyEventReceiverString, &EventReceiver<String^>::OnMyClick);
 MyEventSourceInt->OnClick += gcnew ClickEventHandler<int>(
 MyEventReceiverInt, &EventReceiver<int>::OnMyClick);

 // invoke events
 MyEventSourceString->FireEvents("Hello");
 MyEventSourceInt->FireEvents(112);

 // unhook handler to event
 MyEventSourceString->OnClick -= gcnew ClickEventHandler<String^>(
 MyEventReceiverString, &EventReceiver<String^>::OnMyClick);
 MyEventSourceInt->OnClick -= gcnew ClickEventHandler<int>(
 MyEventReceiverInt, &EventReceiver<int>::OnMyClick);
}

 Generic Structs

 Example: Declare generic struct

The rules for declaring and using generic structs are the same as those for generic classes, except for the

differences noted in the Visual C++ language reference.

// generics_generic_struct1.cpp
// compile with: /clr
using namespace System;

generic <typename ItemType>
ref struct MyGenStruct {
public:
 ItemType myField;

 ItemType AssignValue(ItemType item) {
 myField = item;
 return myField;
 }
};

int main() {
 int myInt = 123;
 MyGenStruct<int>^ myIntObj = gcnew MyGenStruct<int>();
 myIntObj->AssignValue(myInt);
 Console::WriteLine("The field is assigned the integer value: {0}",
 myIntObj->myField);

 double myDouble = 0.123;
 MyGenStruct<double>^ myDoubleObj = gcnew MyGenStruct<double>();
 myDoubleObj->AssignValue(myDouble);
 Console::WriteLine("The field is assigned the double value: {0}",
 myDoubleObj->myField);

 String^ myString = "Hello Generics!";
 MyGenStruct<String^>^ myStringObj = gcnew MyGenStruct<String^>();
 myStringObj->AssignValue(myString);
 Console::WriteLine("The field is assigned the string: {0}",
 myStringObj->myField);
}

The field is assigned the integer value: 123
The field is assigned the double value: 0.123
The field is assigned the string: Hello Generics!

 See also

The following example declares a generic struct, MyGenStruct , with one field, myField , and assigns values of

different types (int , double , String^) to this field.

Generics

Generic Interfaces (C++/CLI)
 5/13/2022 • 4 minutes to read • Edit Online

 Syntax

[attributes] generic <class-key type-parameter-identifier[, ...]>
[type-parameter-constraints-clauses][accesibility-modifiers] interface class identifier [: base-list] {
interface-body} [declarators] ;

 Remarks

 Example: How to declare and instantiate a generic interface

The restrictions that apply to type parameters on classes are the same as those that apply to type parameters on

interfaces (see Generic Classes (C++/CLI)).

The rules that control function overloading are the same for functions within generic classes or generic

interfaces.

Explicit interface member implementations work with constructed interface types in the same way as with

simple interface types (see the following examples).

For more information on interfaces, see interface class.

attributes

(Optional) Additional declarative information. For more information on attributes and attribute classes, see

Attr ibutes .

class-key

class or typename

type-parameter-identifier(s)

Comma-separated identifiers list.

type-parameter-constraints-clauses

Takes the form specified in Constraints on Generic Type Parameters (C++/CLI)

accessibility-modifiers

(Optional) Accessibility modifiers (e.g. public, pr ivate).

identifier

The interface name.

base-list

(Optional) A list that contains one or more explicit base interfaces separated by commas.

interface-body

Declarations of the interface members.

declarators

(Optional) Declarations of variables based on this type.

The following example demonstrates how to declare and instantiate a generic interface. In the example, the

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/generic-interfaces-visual-cpp.md

// generic_interface.cpp
// compile with: /clr
using namespace System;

// An exception to be thrown by the List when
// attempting to access elements beyond the
// end of the list.
ref class ElementNotFoundException : Exception {};

// A generic List interface
generic <typename ItemType>
public interface class IList {
 ItemType MoveFirst();
 bool Add(ItemType item);
 bool AtEnd();
 ItemType Current();
 void MoveNext();
};

// A linked list implementation of IList
generic <typename ItemType>
public ref class List1 : public IList<ItemType> {
 ref class Node {
 ItemType m_item;

 public:
 ItemType get_Item() { return m_item; };
 void set_Item(ItemType value) { m_item = value; };

 Node^ next;

 Node(ItemType item) {
 m_item = item;
 next = nullptr;
 }
 };

 Node^ first;
 Node^ last;
 Node^ current;

 public:
 List1() {
 first = nullptr;
 last = first;
 current = first;
 }

 virtual ItemType MoveFirst() {
 current = first;
 if (first != nullptr)
 return first->get_Item();
 else
 return ItemType();
 }

 virtual bool Add(ItemType item) {
 if (last != nullptr) {
 last->next = gcnew Node(item);
 last = last->next;
 }
 else {
 first = gcnew Node(item);
 last = first;
 current = first;

generic interface IList<ItemType> is declared. It is then implemented by two generic classes, List1<ItemType>

and List2<ItemType> , with different implementations.

 current = first;
 }
 return true;
 }

 virtual bool AtEnd() {
 if (current == nullptr)
 return true;
 else
 return false;
 }

 virtual ItemType Current() {
 if (current != nullptr)
 return current->get_Item();
 else
 throw gcnew ElementNotFoundException();
 }

 virtual void MoveNext() {
 if (current != nullptr)
 current = current->next;
 else
 throw gcnew ElementNotFoundException();
 }
};

// An array implementation of IList
generic <typename ItemType>
ref class List2 : public IList<ItemType> {
 array<ItemType>^ item_array;
 int count;
 int current;

 public:

 List2() {
 // not yet possible to declare an
 // array of a generic type parameter
 item_array = gcnew array<ItemType>(256);
 count = current = 0;
 }

 virtual ItemType MoveFirst() {
 current = 0;
 return item_array[0];
 }

 virtual bool Add(ItemType item) {
 if (count < 256)
 item_array[count++] = item;
 else
 return false;
 return true;
 }

 virtual bool AtEnd() {
 if (current >= count)
 return true;
 else
 return false;
 }

 virtual ItemType Current() {
 if (current < count)
 return item_array[current];
 else
 throw gcnew ElementNotFoundException();
 }

 virtual void MoveNext() {
 if (current < count)
 ++current;
 else
 throw gcnew ElementNotFoundException();
 }
};

// Add elements to the list and display them.
generic <typename ItemType>
void AddStringsAndDisplay(IList<ItemType>^ list, ItemType item1, ItemType item2) {
 list->Add(item1);
 list->Add(item2);
 for (list->MoveFirst(); ! list->AtEnd(); list->MoveNext())
 Console::WriteLine(list->Current());
}

int main() {
 // Instantiate both types of list.

 List1<String^>^ list1 = gcnew List1<String^>();
 List2<String^>^ list2 = gcnew List2<String^>();

 // Use the linked list implementation of IList.
 AddStringsAndDisplay<String^>(list1, "Linked List", "List1");

 // Use the array implementation of the IList.
 AddStringsAndDisplay<String^>(list2, "Array List", "List2");
}

Linked List
List1
Array List
List2

 Example: Declare a generic interface
This example declares a generic interface, IMyGenIface , and two non-generic interfaces, IMySpecializedInt and

ImySpecializedString , that specialize IMyGenIface . The two specialized interfaces are then implemented by two

classes, MyIntClass and MyStringClass . The example shows how to specialize generic interfaces, instantiate

generic and non-generic interfaces, and call the explicitly implemented members on the interfaces.

// generic_interface2.cpp
// compile with: /clr
// Specializing and implementing generic interfaces.
using namespace System;

generic <class ItemType>
public interface class IMyGenIface {
 void Initialize(ItemType f);
};

public interface class IMySpecializedInt: public IMyGenIface<int> {
 void Display();
};

public interface class IMySpecializedString: public IMyGenIface<String^> {
 void Display();
};

public ref class MyIntClass: public IMySpecializedInt {
 int myField;

public:
 virtual void Initialize(int f) {
 myField = f;
 }

 virtual void Display() {
 Console::WriteLine("The integer field contains: {0}", myField);
 }
};

public ref struct MyStringClass: IMySpecializedString {
 String^ myField;

public:
 virtual void Initialize(String^ f) {
 myField = f;
 }

 virtual void Display() {
 Console::WriteLine("The String field contains: {0}", myField);
 }
};

int main() {
 // Instantiate the generic interface.
 IMyGenIface<int>^ myIntObj = gcnew MyIntClass();

 // Instantiate the specialized interface "IMySpecializedInt."
 IMySpecializedInt^ mySpIntObj = (IMySpecializedInt^) myIntObj;

 // Instantiate the generic interface.
 IMyGenIface<String^>^ myStringObj = gcnew MyStringClass();

 // Instantiate the specialized interface "IMySpecializedString."
 IMySpecializedString^ mySpStringObj =
 (IMySpecializedString^) myStringObj;

 // Call the explicitly implemented interface members.
 myIntObj->Initialize(1234);
 mySpIntObj->Display();

 myStringObj->Initialize("My string");
 mySpStringObj->Display();
}

The integer field contains: 1234
The String field contains: My string

 See also
Generics

Generic Delegates (C++/CLI)
 5/13/2022 • 2 minutes to read • Edit Online

 Syntax

[attributes]
generic < [class | typename] type-parameter-identifiers>
[type-parameter-constraints-clauses]
[accessibility-modifiers] delegate result-type identifier
([formal-parameters]);

 Parameters

 Examples

// generics_generic_delegate1.cpp
// compile with: /clr /c
generic <class ItemType>
delegate ItemType GenDelegate(ItemType p1, ItemType% p2);

You can use generic type parameters with delegates. For more information on delegates, see delegate (C++/CLI

and C++/CX).

attributes

(Optional) Additional declarative information. For more information on attributes and attribute classes, see

Attributes.

type-parameter-identifier(s)

Comma-separated list of identifiers for the type parameters.

type-parameter-constraints-clauses

Takes the form specified in Constraints on Generic Type Parameters (C++/CLI)

accessibility-modifiers

(Optional) Accessibility modifiers (e.g. public , private).

result-type

The return type of the delegate.

identifier

The name of the delegate.

formal-parameters

(Optional) The parameter list of the delegate.

The delegate type parameters are specified at the point where a delegate object is created. Both the delegate and

method associated with it must have the same signature. The following is an example of a generic delegate

declaration.

The following sample shows that

You cannot use the same delegate object with different constructed types. Create different delegate

objects for different types.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/generic-delegates-visual-cpp.md

// generics_generic_delegate2.cpp
// compile with: /clr
generic <class ItemType>
delegate ItemType GenDelegate(ItemType p1, ItemType% p2);

generic <class ItemType>
ref struct MyGenClass {
 ItemType MyMethod(ItemType i, ItemType % j) {
 return ItemType();
 }
};

ref struct MyClass {
 generic <class ItemType>
 static ItemType MyStaticMethod(ItemType i, ItemType % j) {
 return ItemType();
 }
};

int main() {
 MyGenClass<int> ^ myObj1 = gcnew MyGenClass<int>();
 MyGenClass<double> ^ myObj2 = gcnew MyGenClass<double>();
 GenDelegate<int>^ myDelegate1 =
 gcnew GenDelegate<int>(myObj1, &MyGenClass<int>::MyMethod);

 GenDelegate<double>^ myDelegate2 =
 gcnew GenDelegate<double>(myObj2, &MyGenClass<double>::MyMethod);

 GenDelegate<int>^ myDelegate =
 gcnew GenDelegate<int>(&MyClass::MyStaticMethod<int>);
}

A generic delegate can be associated with a generic method.

When a generic method is called without specifying type arguments, the compiler tries to infer the type

arguments for the call.

The following example declares a generic delegate GenDelegate<ItemType> , and then instantiates it by

associating it to the method MyMethod that uses the type parameter ItemType . Two instances of the delegate (an

integer and a double) are created and invoked.

// generics_generic_delegate.cpp
// compile with: /clr
using namespace System;

// declare generic delegate
generic <typename ItemType>
delegate ItemType GenDelegate (ItemType p1, ItemType% p2);

// Declare a generic class:
generic <typename ItemType>
ref class MyGenClass {
public:
 ItemType MyMethod(ItemType p1, ItemType% p2) {
 p2 = p1;
 return p1;
 }
};

int main() {
 int i = 0, j = 0;
 double m = 0.0, n = 0.0;

 MyGenClass<int>^ myObj1 = gcnew MyGenClass<int>();
 MyGenClass<double>^ myObj2 = gcnew MyGenClass<double>();

 // Instantiate a delegate using int.
 GenDelegate<int>^ MyDelegate1 =
 gcnew GenDelegate<int>(myObj1, &MyGenClass<int>::MyMethod);

 // Invoke the integer delegate using MyMethod.
 i = MyDelegate1(123, j);

 Console::WriteLine(
 "Invoking the integer delegate: i = {0}, j = {1}", i, j);

 // Instantiate a delegate using double.
 GenDelegate<double>^ MyDelegate2 =
 gcnew GenDelegate<double>(myObj2, &MyGenClass<double>::MyMethod);

 // Invoke the integer delegate using MyMethod.
 m = MyDelegate2(0.123, n);

 Console::WriteLine(
 "Invoking the double delegate: m = {0}, n = {1}", m, n);
}

Invoking the integer delegate: i = 123, j = 123
Invoking the double delegate: m = 0.123, n = 0.123

 See also
Generics

Constraints on generic type parameters (C++/CLI)
 5/13/2022 • 5 minutes to read • Edit Online

 Syntax

where type-parameter: constraint-list

 Parameters

 Remarks

In generic type or method declarations, you can qualify a type parameter with constraints. A constraint is a

requirement that types used as type arguments must satisfy. For example, a constraint might be that the type

argument must implement a certain interface or inherit from a specific class.

Constraints are optional; not specifying a constraint on a parameter is equivalent to constraining that parameter

to Object.

type-parameter

One of the type parameters, to be constrained.

constraint-list

constraint-list is a comma-separated list of constraint specifications. The list can include interfaces to be

implemented by the type parameter.

The list can also include a class. For the type argument to satisfy a base class constraint, it must be the same

class as the constraint or derive from the constraint.

You can also specify gcnew() to indicate the type argument must have a public parameterless constructor ; or

ref class to indicate the type argument must be a reference type, including any class, interface, delegate, or

array type; or value class to indicate the type argument must be a value type. Any value type except

Nullable<T> can be specified.

You can also specify a generic parameter as a constraint. The type argument supplied for the type you're

constraining must be or derive from the type of the constraint. This parameter is called a naked type constraint.

The constraint clause consists of where followed by a type parameter, a colon (:), and the constraint, which

specifies the nature of the restriction on the type parameter. where is a context-sensitive keyword. For more

information, see Context-sensitive keywords. Separate multiple where clauses with a space.

Constraints are applied to type parameters to place limitations on the types that can be used as arguments for a

generic type or method.

Class and interface constraints specify that the argument types must be or inherit from a specified class or

implement a specified interface.

The application of constraints to a generic type or method allows code in that type or method to take advantage

of the known features of the constrained types. For example, you can declare a generic class such that the type

parameter implements the IComparable<T> interface:

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/constraints-on-generic-type-parameters-cpp-cli.md
https://docs.microsoft.com/en-us/dotnet/api/system.object

// generics_constraints_1.cpp
// compile with: /c /clr
using namespace System;
generic <typename T>
where T : IComparable<T>
ref class List {};

// generics_constraints_2.cpp
// compile with: /c /clr
using namespace System;
using namespace System::Collections::Generic;
generic <typename T>
where T : List<T>, IComparable<T>
ref class List {};

// generics_constraints_3.cpp
// compile with: /c /clr
using namespace System;
using namespace System::Collections::Generic;

generic <typename K, typename V>
 where K: IComparable<K>
 where V: IComparable<K>
ref class Dictionary {};

This constraint requires that a type argument used for T implements IComparable<T> at compile time. It also

allows interface methods, such as CompareTo , to be called. No cast is needed on an instance of the type

parameter to call interface methods.

Static methods in the type argument's class can't be called through the type parameter ; they can be called only

through the actual named type.

A constraint can't be a value type, including built-in types such as int or double . Since value types cannot have

derived classes, only one class could ever satisfy the constraint. In that case, the generic can be rewritten with

the type parameter replaced by the specific value type.

Constraints are required in some cases since the compiler won't allow the use of methods or other features of

an unknown type unless the constraints imply that the unknown type supports the methods or interfaces.

Multiple constraints for the same type parameter can be specified in a comma-separated list

With multiple type parameters, use one where clause for each type parameter. For example:

Use constraints in your code according to the following rules:

If multiple constraints are listed, the constraints may be listed in any order.

Constraints can also be class types, such as abstract base classes. However, constraints can't be value

types or sealed classes.

Constraints can't themselves be type parameters, but they can involve the type parameters in an open

constructed type. For example:

 Examples

// generics_constraints_5.cpp
// compile with: /clr
using namespace System;

interface class IAge {
 int Age();
};

ref class MyClass {
public:
 generic <class ItemType> where ItemType : IAge
 bool isSenior(ItemType item) {
 // Because of the constraint,
 // the Age method can be called on ItemType.
 if (item->Age() >= 65)
 return true;
 else
 return false;
 }
};

ref class Senior : IAge {
public:
 virtual int Age() {
 return 70;
 }
};

ref class Adult: IAge {
public:
 virtual int Age() {
 return 30;
 }
};

int main() {
 MyClass^ ageGuess = gcnew MyClass();
 Adult^ parent = gcnew Adult();
 Senior^ grandfather = gcnew Senior();

 if (ageGuess->isSenior<Adult^>(parent))
 Console::WriteLine("\"parent\" is a senior");
 else
 Console::WriteLine("\"parent\" is not a senior");

 if (ageGuess->isSenior<Senior^>(grandfather))
 Console::WriteLine("\"grandfather\" is a senior");
 else
 Console::WriteLine("\"grandfather\" is not a senior");
}

// generics_constraints_4.cpp
// compile with: /c /clr
generic <typename T>
ref class G1 {};

generic <typename Type1, typename Type2>
where Type1 : G1<Type2> // OK, G1 takes one type parameter
ref class G2{};

The following example demonstrates using constraints to call instance methods on type parameters.

"parent" is not a senior
"grandfather" is a senior

// generics_constraints_6.cpp
// compile with: /clr /c
generic <class T>
ref struct List {
 generic <class U>
 where U : T
 void Add(List<U> items) {}
};

generic <class A, class B, class C>
where A : C
ref struct SampleClass {};

 See also

When a generic type parameter is used as a constraint, it's called a naked type constraint. Naked type constraints

are useful when a member function with its own type parameter needs to constrain that parameter to the type

parameter of the containing type.

In the following example, T is a naked type constraint in the context of the Add method.

Naked type constraints can also be used in generic class definitions. The usefulness of naked type constraints

with generic classes is limited because the compiler can assume nothing about a naked type constraint except

that it derives from Object. Use naked type constraints on generic classes in scenarios in which you wish to

enforce an inheritance relationship between two type parameters.

Generics

https://docs.microsoft.com/en-us/dotnet/api/system.object

Consuming Generics (C++/CLI)
 5/13/2022 • 2 minutes to read • Edit Online

 Example: Generic class defined in C#

Generics authored in one .NET (or UWP) language may be used in other languages. Unlike templates, a generic

in a compiled assembly still remains generic. Thus, one may instantiate the generic type in a different assembly

and even in a different language than the assembly in which the generic type was defined.

This example shows a generic class defined in C#.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/consuming-generics-cpp-cli.md

// consuming_generics_from_other_NET_languages.cs
// compile with: /target:library
// a C# program
public class CircularList<ItemType> {
 class ListNode {
 public ItemType m_item;
 public ListNode next;
 public ListNode(ItemType item) {
 m_item = item;
 }
 }

 ListNode first, last;

 public CircularList() {}

 public void Add(ItemType item) {
 ListNode newnode = new ListNode(item);
 if (first == null) {
 first = last = newnode;
 first.next = newnode;
 last.next = first;
 }
 else {
 newnode.next = first;
 first = newnode;
 last.next = first;
 }
 }

 public void Remove(ItemType item) {
 ListNode iter = first;
 if (first.m_item.Equals(item)) {
 first =
 last.next = first.next;
 }
 for (; iter != last ; iter = iter.next)
 if (iter.next.m_item.Equals(item)) {
 if (iter.next == last)
 last = iter;
 iter.next = iter.next.next;
 return;
 }
 }

 public void PrintAll() {
 ListNode iter = first;
 do {
 System.Console.WriteLine(iter.m_item);
 iter = iter.next;
 } while (iter != last);
 }
}

 Example: Consume assembly authored in C#
This example consumes the assembly authored in C#.

// consuming_generics_from_other_NET_languages_2.cpp
// compile with: /clr
#using <consuming_generics_from_other_NET_languages.dll>
using namespace System;
class NativeClass {};
ref class MgdClass {};

int main() {
 CircularList<int>^ circ1 = gcnew CircularList<int>();
 CircularList<MgdClass^>^ circ2 = gcnew CircularList<MgdClass^>();

 for (int i = 0 ; i < 100 ; i += 10)
 circ1->Add(i);
 circ1->Remove(50);
 circ1->PrintAll();
}

90
80
70
60
40
30
20
10

 See also

The example produces this output:

Generics

Generics and Templates (C++/CLI)
 5/13/2022 • 2 minutes to read • Edit Online

 Comparing Templates and Generics

 Combining Templates and Generics

Generics and templates are both language features that provide support for parameterized types. However, they

are different and have different uses. This topic provides an overview of the many differences.

For more information, see Windows Runtime and Managed Templates.

Key differences between generics and C++ templates:

Generics are generic until the types are substituted for them at runtime. Templates are specialized at

compile time so they are not still parameterized types at runtime

The common language runtime specifically supports generics in MSIL. Because the runtime knows about

generics, specific types can be substituted for generic types when referencing an assembly containing a

generic type. Templates, in contrast, resolve into ordinary types at compile time and the resulting types

may not be specialized in other assemblies.

Generics specialized in two different assemblies with the same type arguments are the same type.

Templates specialized in two different assemblies with the same type arguments are considered by the

runtime to be different types.

Generics are generated as a single piece of executable code which is used for all reference type

arguments (this is not true for value types, which have a unique implementation per value type). The JIT

compiler knows about generics and is able to optimize the code for the reference or value types that are

used as type arguments. Templates generate separate runtime code for each specialization.

Generics do not allow non-type template parameters, such as template <int i> C {} . Templates allow

them.

Generics do not allow explicit specialization (that is, a custom implementation of a template for a specific

type). Templates do.

Generics do not allow partial specialization (a custom implementation for a subset of the type

arguments). Templates do.

Generics do not allow the type parameter to be used as the base class for the generic type. Templates do.

Templates support template-template parameters (e.g.

template<template<class T> class X> class MyClass), but generics do not.

The basic difference in generics has implications for building applications that combine templates and generics.

For example, suppose you have a template class that you want to create a generic wrapper for to expose that

template to other languages as a generic. You cannot have the generic take a type parameter that it then passes

though to the template, since the template needs to have that type parameter at compile time, but the generic

won't resolve the type parameter until runtime. Nesting a template inside a generic won't work either because

there's no way to expand the templates at compile time for arbitrary generic types that could be instantiated at

runtime.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/generics-and-templates-visual-cpp.md

Example
 Description

 Code

// templates_and_generics.cpp
// compile with: /clr
using namespace System;

generic <class ItemType>
ref class MyGeneric {
 ItemType m_item;

public:
 MyGeneric(ItemType item) : m_item(item) {}
 void F() {
 Console::WriteLine("F");
 }
};

template <class T>
public ref class MyRef {
MyGeneric<T>^ ig;

public:
 MyRef(T t) {
 ig = gcnew MyGeneric<T>(t);
 ig->F();
 }
};

int main() {
 // instantiate the template
 MyRef<int>^ mref = gcnew MyRef<int>(11);
}

F

 See also

The following example shows a simple example of using templates and generics together. In this example, the

template class passes its parameter through to the generic type. The reverse is not possible.

This idiom could be used when you want to build on an existing generic API with template code that is local to a

C++/CLI assembly, or when you need to add an extra layer of parameterization to a generic type, to take

advantage of certain features of templates not supported by generics.

Generics

How to: Improve Performance with Generics
(C++/CLI)

 5/13/2022 • 3 minutes to read • Edit Online

 Example: Two main drawbacks of .NET Framework collections

With generics, you can create reusable code based on a type parameter. The actual type of the type parameter is

deferred until called by client code. For more information on generics, see Generics.

This article will discuss how generics can help increase the performance of an application that uses collections.

The .NET Framework comes with many collection classes in the System.Collections namespace. Most of these

collections operate on objects of type System.Object. This allows collections to store any type, since all types in

the .NET Framework, even value types, derive from System.Object. However, there are two drawbacks to this

approach.

First, if the collection is storing value types such as integers, the value must be boxed before being added to the

collection and unboxed when the value is retrieved from the collection. These are expensive operations.

Second, there is no way to control which types can be added to a collection. It is perfectly legal to add an integer

and a string to the same collection, even though this is probably not what was intended. Therefore, in order for

your code to be type safe, you have to check that the type retrieved from the collection really is what was

expected.

The following code example shows the two main drawbacks of the .NET Framework collections before generics.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/how-to-improve-performance-with-generics-visual-cpp.md
https://docs.microsoft.com/en-us/dotnet/api/system.collections
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object

// perf_pre_generics.cpp
// compile with: /clr

using namespace System;
using namespace System::Collections;

int main()
{
 // This Stack can contain any type.
 Stack ^s = gcnew Stack();

 // Push an integer to the Stack.
 // A boxing operation is performed here.
 s->Push(7);

 // Push a String to the same Stack.
 // The Stack now contains two different data types.
 s->Push("Seven");

 // Pop the items off the Stack.
 // The item is returned as an Object, so a cast is
 // necessary to convert it to its proper type.
 while (s->Count> 0)
 {
 Object ^o = s->Pop();
 if (o->GetType() == Type::GetType("System.String"))
 {
 Console::WriteLine("Popped a String: {0}", (String ^)o);
 }
 else if (o->GetType() == Type::GetType("System.Int32"))
 {
 Console::WriteLine("Popped an int: {0}", (int)o);
 }
 else
 {
 Console::WriteLine("Popped an unknown type!");
 }
 }
}

Popped a String: Seven
Popped an int: 7

 Example: Benefit of using generic collection
The new System.Collections.Generic namespace contains many of the same collections found in the

System.Collections namespace, but they have been modified to accept generic type parameters. This eliminates

the two drawbacks of non-generic collections: the boxing and unboxing of value types and the inability to

specify the types to be stored in the collections. Operations on the two collections are identical; they differ only

in how they are instantiated.

Compare the example written above with this example that uses a generic Stack<T> collection. On large

collections that are frequently accessed, the performance of this example will be significantly greater than the

preceding example.

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic
https://docs.microsoft.com/en-us/dotnet/api/system.collections
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1

// perf_post_generics.cpp
// compile with: /clr

#using <System.dll>

using namespace System;
using namespace System::Collections::Generic;

int main()
{
 // This Stack can only contain integers.
 Stack<int> ^s = gcnew Stack<int>();

 // Push an integer to the Stack.
 // A boxing operation is performed here.
 s->Push(7);
 s->Push(14);

 // You can no longer push a String to the same Stack.
 // This will result in compile time error C2664.
 //s->Push("Seven");

 // Pop an item off the Stack.
 // The item is returned as the type of the collection, so no
 // casting is necessary and no unboxing is performed for
 // value types.
 int i = s->Pop();
 Console::WriteLine(i);

 // You can no longer retrieve a String from the Stack.
 // This will result in compile time error C2440.
 //String ^str = s->Pop();
}

14

 See also
Generics

interface class (C++/CLI and C++/CX)
 5/13/2022 • 3 minutes to read • Edit Online

 All runtimes
 Syntax

interface_access interface class name : inherit_access base_interface {};
interface_access interface struct name : inherit_access base_interface {};

 Parameters

 Remarks

Declares an interface. For information on native interfaces, see __interface .

interface_access

The accessibility of an interface outside the assembly. Possible values are public and private . private is the

default. Nested interfaces can't have an interface_access specifier.

name

The name of the interface.

inherit_access

The accessibility of base_interface . The only permitted accessibility for a base interface is public (the default).

base_interface

(Optional) A base interface for interface name .

interface struct is equivalent to interface class .

An interface can contain declarations for functions, events, and properties. All interface members have public

accessibility. An interface can also contain static data members, functions, events, and properties, and these

static members must be defined in the interface.

An interface defines how a class may be implemented. An interface isn't a class and classes can only implement

interfaces. When a class defines a function declared in an interface, the function is implemented, not overridden.

Therefore, name lookup doesn't include interface members.

A class or struct that derives from an interface must implement all members of the interface. When

implementing interface name , you must also implement the interfaces in the base_interface list.

For more information, see:

Interface static constructor

Generic interfaces (C++/CLI)

For information on other CLR types, see Classes and Structs.

You can detect at compile time if a type is an interface with __is_interface_class(type) . For more information,

see Compiler support for type traits.

In the development environment, you can get F1 help on these keywords by highlighting the keyword (for

example, interface class) and pressing F1 .

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/interface-class-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cpp/interface
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-define-an-interface-static-constructor-cpp-cli

 Windows Runtime
 Remarks

 Requirements

 Common Language Runtime
 Remarks

 Requirements

 Examples

// mcppv2_interface_class.cpp
// compile with: /clr
using namespace System;

public delegate void ClickEventHandler(int, double);

// define interface with nested interface
public interface class Interface_A {
 void Function_1();

 interface class Interface_Nested_A {
 void Function_2();
 };
};

// interface with a base interface
public interface class Interface_B : Interface_A {
 property int Property_Block;
 event ClickEventHandler^ OnClick;
 static void Function_3() { Console::WriteLine("in Function_3"); }
};

// implement nested interface
public ref class MyClass : public Interface_A::Interface_Nested_A {
public:
 virtual void Function_2() { Console::WriteLine("in Function_2"); }
};

// implement interface and base interface
public ref class MyClass2 : public Interface_B {
private:
 int MyInt;

public:
 // implement non-static function
 virtual void Function_1() { Console::WriteLine("in Function_1"); }

 // implement property
 property int Property_Block {
 virtual int get() { return MyInt; }
 virtual void set(int value) { MyInt = value; }
 }
 // implement event
 virtual event ClickEventHandler^ OnClick;

(There are no remarks for this language feature that apply to only the Windows Runtime.)

Compiler option: /ZW

(There are no remarks for this language feature that apply to only the common language runtime.)

Compiler option: /clr

The following code example demonstrates how an interface can define the behavior of a clock function.

 void FireEvents() {
 OnClick(7, 3.14159);
 }
};

// class that defines method called when event occurs
ref class EventReceiver {
public:
 void OnMyClick(int i, double d) {
 Console::WriteLine("OnClick: {0}, {1}", i, d);
 }
};

int main() {
 // call static function in an interface
 Interface_B::Function_3();

 // instantiate class that implements nested interface
 MyClass ^ x = gcnew MyClass;
 x->Function_2();

 // instantiate class that implements interface with base interface
 MyClass2 ^ y = gcnew MyClass2;
 y->Function_1();
 y->Property_Block = 8;
 Console::WriteLine(y->Property_Block);

 EventReceiver^ MyEventReceiver = gcnew EventReceiver();

 // hook handler to event
 y->OnClick += gcnew ClickEventHandler(MyEventReceiver, &EventReceiver::OnMyClick);

 // invoke events
 y->FireEvents();

 // unhook handler to event
 y->OnClick -= gcnew ClickEventHandler(MyEventReceiver, &EventReceiver::OnMyClick);

 // call implemented function via interface handle
 Interface_A^ hi = gcnew MyClass2();
 hi->Function_1();
}

in Function_3

in Function_2

in Function_1

8

OnClick: 7, 3.14159

in Function_1

The following code sample shows two ways to implement functions with the same signature declared in

multiple interfaces and where those interfaces are used by a class.

// mcppv2_interface_class_2.cpp
// compile with: /clr /c
interface class I {
 void Test();
 void Test2();
};

interface class J : I {
 void Test();
 void Test2();
};

ref struct R : I, J {
 // satisfies the requirement to implement Test in both interfaces
 virtual void Test() {}

 // implement both interface functions with explicit overrides
 virtual void A() = I::Test2 {}
 virtual void B() = J::Test2 {}
};

 See also
Component Extensions for .NET and UWP

literal (C++/CLI)
 5/13/2022 • 2 minutes to read • Edit Online

 All Platforms
 Remarks

 Windows Runtime
 Remarks

 Common Language Runtime

 Remarks

 Examples

// mcppv2_literal.cpp
// compile with: /clr
ref struct X {
 literal int i = 4;
};

int main() {
 int value = X::i;
}

A variable (data member) marked as literal in a /clr compilation is a compile-time constant. It's the native

equivalent of a C# const variable.

(There are no remarks for this language feature that apply to all runtimes.)

(There are no remarks for this language feature that apply to only the Windows Runtime.)

A data member marked as literal must be initialized when declared. And, the value must be a constant

integral, enum, or string type. Conversion from the type of the initialization expression to the type of the

literal data member can't require a user-defined conversion.

No memory is allocated for the literal field at runtime; the compiler only inserts its value in the metadata for

the class. The literal value is treated as a compile-time constant. The closest equivalent in Standard C++ is

constexpr , but a data member can't be constexpr in C++/CLI.

A variable marked as literal differs from one marked static const . A static const data member isn't made

available in metadata to other compilers. For more information, see static and const .

literal is a context-sensitive keyword. For more information, see Context-sensitive keywords.

This example shows that a literal variable implies static .

The following sample shows the effect of literal in metadata:

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/literal-cpp-component-extensions.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/const
https://docs.microsoft.com/en-us/cpp/cpp/storage-classes-cpp
https://docs.microsoft.com/en-us/cpp/cpp/const-cpp

// mcppv2_literal2.cpp
// compile with: /clr /LD
public ref struct A {
 literal int lit = 0;
 static const int sc = 1;
};

.field public static int32 modopt([mscorlib]System.Runtime.CompilerServices.IsConst) sc = int32(0x00000001)

.field public static literal int32 lit = int32(0x00000000)

// mcppv2_literal3.cs
// compile with: /reference:mcppv2_literal2.dll
// A C# program
class B {
 public static void Main() {
 // OK
 System.Console.WriteLine(A.lit);
 System.Console.WriteLine(A.sc);

 // C# does not enforce C++ const
 A.sc = 9;
 System.Console.WriteLine(A.sc);

 // C# enforces const for a literal
 A.lit = 9; // CS0131

 // you can assign a C++ literal variable to a C# const variable
 const int i = A.lit;
 System.Console.WriteLine(i);

 // but you cannot assign a C++ static const variable
 // to a C# const variable
 const int j = A.sc; // CS0133
 System.Console.WriteLine(j);
 }
}

 Requirements

 See also

Notice the difference in the metadata for sc and lit : the modopt directive is applied to sc , meaning it can be

ignored by other compilers.

The following sample, authored in C#, references the metadata created in the previous sample and shows the

effect of literal and static const variables:

Compiler option: /clr

Component Extensions for .NET and UWP

Windows Runtime and Managed Templates
(C++/CLI and C++/CX)

 5/13/2022 • 2 minutes to read • Edit Online

 All Runtimes

 Windows Runtime

 Requirements

 Common Language Runtime

 Requirements

 Examples

// managed_templates.cpp
// compile with: /clr /c

generic<class T>
ref class R;

template<class T>
ref class Z {
 // Instantiate a generic with a template parameter.
 R<T>^ r; // OK
};

generic<class T>
ref class R {
 // Cannot instantiate a template with a generic parameter.
 Z<T>^ z; // C3231
};

Templates enable you to define a prototype of a Windows Runtime or common language runtime type, and then

instantiate variations of that type by using different template type parameters.

You can create templates from value or reference types. For more information about creating value or reference

types, see Classes and Structs.

For more information about standard C++ class templates, see Class Templates.

(There are no remarks for this language feature that apply to only the Windows Runtime.)

Compiler option: /ZW

There are some limitations to creating class templates from managed types, which are demonstrated in the

following code examples.

Compiler option: /clr

It is possible to instantiate a generic type with a managed type template parameter, but you cannot instantiate a

managed template with a generic type template parameter. This is because generic types are resolved at

runtime. For more information, see Generics and Templates (C++/CLI).

A generic type or function cannot be nested in a managed template.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/windows-runtime-and-managed-templates-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cpp/class-templates

// managed_templates_2.cpp
// compile with: /clr /c

template<class T> public ref class R {
 generic<class T> ref class W {}; // C2959
};

// managed_templates_3.cpp
// compile with: /clr

// Will not appear in metadata.
template<class T> public ref class A {};

// Will appear in metadata as a specialized type.
template<class T> public ref class R {
public:
 // Test is referenced, will appear in metadata
 void Test() {}

 // Test2 is not referenced, will not appear in metadata
 void Test2() {}
};

// Will appear in metadata.
generic<class T> public ref class G { };

public ref class S { };

int main() {
 R<int>^ r = gcnew R<int>;
 r->Test();
}

// managed_templates_4.cpp
// compile with: /clr /c

// class template
// ref class
template <class T>
ref class A {};

// partial template specialization
// value type
template <class T>
value class A <T *> {};

// partial template specialization
// interface
template <class T>
interface class A<T%> {};

// explicit template specialization
// native class
template <>
class A <int> {};

You cannot access templates defined in a referenced assembly with C++/CLI language syntax, but you can use

reflection. If a template is not instantiated, it's not emitted in the metadata. If a template is instantiated, only

referenced member functions will appear in metadata.

You can change the managed modifier of a class in a partial specialization or explicit specialization of a class

template.

 See also
Component Extensions for .NET and UWP

new (new slot in vtable) (C++/CLI and C++/CX)
 5/13/2022 • 2 minutes to read • Edit Online

 All Runtimes

 Windows Runtime

 Common Language Runtime
 Remarks

 Requirements

 Examples

The new keyword indicates that a virtual member will get a new slot in the vtable.

(There are no remarks for this language feature that apply to all runtimes.)

Not supported in Windows Runtime.

In a /clr compilation, new indicates that a virtual member will get a new slot in the vtable; that the function

does not override a base class method.

new causes the newslot modifier to be added to the IL for the function. For more information about newslot,

see:

MethodInfo.GetBaseDefinition()

System.Reflection.MethodAttributes

Compiler option: /clr

The following sample shows the effect of new .

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/new-new-slot-in-vtable-cpp-component-extensions.md
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.methodinfo.getbasedefinition#system-reflection-methodinfo-getbasedefinition
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.methodattributes

// newslot.cpp
// compile with: /clr
ref class C {
public:
 virtual void f() {
 System::Console::WriteLine("C::f() called");
 }

 virtual void g() {
 System::Console::WriteLine("C::g() called");
 }
};

ref class D : public C {
public:
 virtual void f() new {
 System::Console::WriteLine("D::f() called");
 }

 virtual void g() override {
 System::Console::WriteLine("D::g() called");
 }
};

ref class E : public D {
public:
 virtual void f() override {
 System::Console::WriteLine("E::f() called");
 }
};

int main() {
 D^ d = gcnew D;
 C^ c = gcnew D;

 c->f(); // calls C::f
 d->f(); // calls D::f

 c->g(); // calls D::g
 d->g(); // calls D::g

 D ^ e = gcnew E;
 e->f(); // calls E::f
}

C::f() called

D::f() called

D::g() called

D::g() called

E::f() called

 See also
Component Extensions for .NET and UWP

Override Specifiers

nullptr (C++/CLI and C++/CX)
 5/13/2022 • 4 minutes to read • Edit Online

 Usage

 Example: nullptr keyword

The nullptr keyword represents a null pointer value. Use a null pointer value to indicate that an object handle,

interior pointer, or native pointer type does not point to an object.

Use nullptr with either managed or native code. The compiler emits appropriate but different instructions for

managed and native null pointer values. For information about using the ISO standard C++ version of this

keyword, see nullptr.

The __nullptr keyword is a Microsoft-specific keyword that has the same meaning as nullptr , but applies to

only native code. If you use nullptr with native C/C++ code and then compile with the /clr compiler option, the

compiler cannot determine whether nullptr indicates a native or managed null pointer value. To make your

intention clear to the compiler, use nullptr to specify a managed value or __nullptr to specify a native value.

The nullptr keyword is equivalent to Nothing in Visual Basic and null in C#.

The nullptr keyword can be used anywhere a handle, native pointer, or function argument can be used.

The nullptr keyword is not a type and is not supported for use with:

sizeof

typeid

throw nullptr (although throw (Object^)nullptr; will work)

The nullptr keyword can be used in the initialization of the following pointer types:

Native pointer

Windows Runtime handle

Managed handle

Managed interior pointer

The nullptr keyword can be used to test if a pointer or handle reference is null before the reference is used.

Function calls among languages that use null pointer values for error checking should be interpreted correctly.

You cannot initialize a handle to zero; only nullptr can be used. Assignment of constant 0 to an object handle

produces a boxed Int32 and a cast to Object^ .

The following code example demonstrates that the nullptr keyword can be used wherever a handle, native

pointer, or function argument can be used. And the example demonstrates that the nullptr keyword can be

used to check a reference before it is used.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/nullptr-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cpp/nullptr
https://docs.microsoft.com/en-us/cpp/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/cpp/sizeof-operator
https://docs.microsoft.com/en-us/cpp/cpp/typeid-operator

// mcpp_nullptr.cpp
// compile with: /clr
value class V {};
ref class G {};
void f(System::Object ^) {}

int main() {
// Native pointer.
 int *pN = nullptr;
// Managed handle.
 G ^pG = nullptr;
 V ^pV1 = nullptr;
// Managed interior pointer.
 interior_ptr<V> pV2 = nullptr;
// Reference checking before using a pointer.
 if (pN == nullptr) {}
 if (pG == nullptr) {}
 if (pV1 == nullptr) {}
 if (pV2 == nullptr) {}
// nullptr can be used as a function argument.
 f(nullptr); // calls f(System::Object ^)
}

 Example: Use nullptr and zero interchangeably

// mcpp_nullptr_1.cpp
// compile with: /clr
class MyClass {
public:
 int i;
};

int main() {
 MyClass * pMyClass = nullptr;
 if (pMyClass == nullptr)
 System::Console::WriteLine("pMyClass == nullptr");

 if (pMyClass == 0)
 System::Console::WriteLine("pMyClass == 0");

 pMyClass = 0;
 if (pMyClass == nullptr)
 System::Console::WriteLine("pMyClass == nullptr");

 if (pMyClass == 0)
 System::Console::WriteLine("pMyClass == 0");
}

pMyClass == nullptr

pMyClass == 0

pMyClass == nullptr

pMyClass == 0

 Example: Interpret nullptr as a handle

The following code example shows that nullptr and zero can be used interchangeably on native pointers.

// mcpp_nullptr_2.cpp
// compile with: /clr /LD
void f(int *){}
void f(int ^){}

void f_null() {
 f(nullptr); // C2668
 // try one of the following lines instead
 f((int *) nullptr);
 f((int ^) nullptr);
}

 Example: Cast nullptr

// mcpp_nullptr_3.cpp
// compile with: /clr /LD
using namespace System;
template <typename T>
void f(T) {} // C2036 cannot deduce template type because nullptr can be any type

int main() {
 f((Object ^) nullptr); // T = Object^, call f(Object ^)

 // Delete the following line to resolve.
 f(nullptr);

 f(0); // T = int, call f(int)
}

 Example: Pass nullptr as a function parameter

// mcpp_nullptr_4.cpp
// compile with: /clr
using namespace System;
void f(Object ^ x) {
 Console::WriteLine("test");
}

int main() {
 f(nullptr);
}

test

 Example: Default initialization

The following code example shows that nullptr is interpreted as a handle to any type or a native pointer to any

type. In case of function overloading with handles to different types, an ambiguity error will be generated. The

nullptr would have to be explicitly cast to a type.

The following code example shows that casting nullptr is allowed and returns a pointer or handle to the cast

type that contains the nullptr value.

The following code example shows that nullptr can be used as a function parameter.

The following code example shows that when handles are declared and not explicitly initialized, they are default

// mcpp_nullptr_5.cpp
// compile with: /clr
using namespace System;
ref class MyClass {
public:
 void Test() {
 MyClass ^pMyClass; // gc type
 if (pMyClass == nullptr)
 Console::WriteLine("NULL");
 }
};

int main() {
 MyClass ^ x = gcnew MyClass();
 x -> Test();
}

NULL

 Example: Assign nullptr to a native pointer

// mcpp_nullptr_6.cpp
// compile with: /clr
int main() {
 int * i = 0;
 int * j = nullptr;
}

 Requirements

 See also

initialized to nullptr .

The following code example shows that nullptr can be assigned to a native pointer when you compile with

/clr .

Compiler option: (Not required; supported by all code generation options, including /ZW and /clr)

Component Extensions for .NET and UWP

nullptr

https://docs.microsoft.com/en-us/cpp/cpp/nullptr

Override Specifiers (C++/CLI and C++/CX)
 5/13/2022 • 2 minutes to read • Edit Online

 All Runtimes
 Remarks

 Windows Runtime

 Requirements

 Common Language Runtime

 Requirements

 See also

Override specifiers modify how inherited types and members of inherited types behave in derived types.

For more information about override specifiers, see:

abstract

new (new slot in vtable)

override

sealed

Override Specifiers and Native Compilations

abstract and sealed are also valid on type declarations, where they do not act as override specifiers.

For information about explicitly overriding base class functions, see Explicit Overrides.

(There are no remarks for this language feature that apply to only the Windows Runtime.)

Compiler option: /ZW

(There are no remarks for this language feature that apply to only the common language runtime.)

Compiler option: /clr

Component Extensions for .NET and UWP

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/override-specifiers-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-declare-override-specifiers-in-native-compilations-cpp-cli

override (C++/CLI and C++/CX)
 5/13/2022 • 2 minutes to read • Edit Online

 Remarks

 Examples

// override_keyword_1.cpp
// compile with: /c
struct I1 {
 virtual void f();
};

struct X : public I1 {
 virtual void f() override {}
};

 Windows Runtime example

// override_keyword_2.cpp
// compile with: /ZW /c
ref struct I1 {
 virtual void f();
};

ref struct X : public I1 {
 virtual void f() override {}
};

 Requirements

 C++/CLI example

The overr ide context-sensitive keyword indicates that a member of a type overrides a base class or a base

interface member.

The overr ide keyword is valid when compiling for native targets (default compiler option), Windows Runtime

targets (/ZW compiler option), or common language runtime targets (/clr compiler option).

For more information about override specifiers, see override Specifier and Override Specifiers and Native

Compilations.

For more information about context-sensitive keywords, see Context-Sensitive Keywords.

The following code example shows that overr ide can also be used in native compilations.

The following code example shows that overr ide can be used in Windows Runtime compilations.

Compiler option: /ZW

The following code example shows that overr ide can be used in common language runtime compilations.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/override-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cpp/override-specifier
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-declare-override-specifiers-in-native-compilations-cpp-cli

// override_keyword_3.cpp
// compile with: /clr /c
ref struct I1 {
 virtual void f();
};

ref struct X : public I1 {
 virtual void f() override {}
};

 Requirements

 See also

Compiler option: /clr

override Specifier

Override Specifiers

https://docs.microsoft.com/en-us/cpp/cpp/override-specifier

partial (C++/CLI and C++/CX)
 5/13/2022 • 2 minutes to read • Edit Online

 All Runtimes

 Windows Runtime

 Syntax

partial class-key identifier {
 /* The first part of the partial class definition.
 This is typically auto-generated */
}
// ...
class-key identifier {
 /* The subsequent part(s) of the class definition. The same
 identifier is specified, but the "partial" keyword is omitted. */
}

 Parameters

 Remarks

The par tial keyword enables different parts of the same ref class to be authored independently and in different

files.

(This language feature applies only to the Windows Runtime.)

For a ref class that has two partial definitions, the par tial keyword is applied to the first occurrence of the

definition, and this is typically done by auto-generated code, so that a human coder doesn't use the keyword

very often. For all subsequent partial definitions of the class, omit the par tial modifier from the class-key

keyword and class identifier. When the compiler encounters a previously defined ref class and class identifier but

no par tial keyword, it internally combines all of the parts of the ref class definition into one definition.

class-key

A keyword that declares a class or struct that is supported by the Windows Runtime. Either ref class , value

class , ref struct, or value struct.

identifier

The name of the defined type.

A partial class supports scenarios where you modify one part of a class definition in one file, and automatic

code-generating software—for example, the XAML designer—modifies code in the same class in another file. By

using a partial class, you can prevent the automatic code generator from overwriting your code. In a Visual

Studio project, the par tial modifier is applied automatically to the generated file.

Contents: With two exceptions, a partial class definition can contain anything that the full class definition could

contain if the par tial keyword was omitted. However, you can't specify class accessibility (for example,

public partial class X { ... };), or a declspec.

Access specifiers used in a partial class definition for identifier do not affect the default accessibility in a

subsequent partial or full class definition for identifier. Inline definitions of static data members are allowed.

Declaration: A partial definition of a class identifier only introduces the name identifier, but identifier cannot be

used in a way that requires a class definition. The name identifier can't be used to know the size of identifier, or

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/partial-cpp-component-extensions.md

 Requirements

 Common Language Runtime

 See also

to use a base or member of identifier until after the compiler encounters the full definition of identifier.

Number and ordering: There can be zero or more partial class definitions for identifier. Every partial class

definition of identifier must lexically precede the one full definition of identifier (if there is a full definition;

otherwise, the class can't be used except as if forward-declared) but need not precede forward declarations of

identifier. All class-keys must match.

Full definition: At the point of the full definition of the class identifier, the behavior is the same as if the definition

of identifier had declared all base classes, members, etc. in the order in which they were encountered and

defined in the partial classes.

Templates: A partial class cannot be a template.

Generics: A partial class can be a generic if the full definition could be generic. But every partial and full class

must have exactly the same generic parameters, including formal parameter names.

For more information about how to use the par tial keyword, see Partial Classes (C++/CX).

Compiler option: /ZW

(This language feature does not apply to the Common Language Runtime.)

Partial Classes (C++/CX)

https://docs.microsoft.com/en-us/cpp/cppcx/partial-classes-c-cx
https://docs.microsoft.com/en-us/cpp/cppcx/partial-classes-c-cx

property (C++/CLI and C++/CX)
 5/13/2022 • 5 minutes to read • Edit Online

 All runtimes

 Syntax

property type property_name;

property type property_name {
 access-modifier type get() inheritance-modifier {property_body};
 access-modifier void set(type value) inheritance-modifier {property_body};
}

property type property_name[index_list] {
 access-modifier type get(index_list) inheritance-modifier {property_body};
 access-modifier void set(index_list, value) inheritance-modifier {property_body};
}

property type default[index_list] {
 access-modifier type get(index_list) inheritance-modifier {property_body};
 access-modifier void set(index_list, value) inheritance-modifier {property_body};
}

 Parameters

Declares a property, which is a member function that behaves and is accessed like a data member or an array

element.

You can declare one of the following types of properties.

simple proper ty

By default, creates a set accessor that assigns the property value, a get accessor that retrieves the

property value, and a compiler-generated private data member that contains the property value.

proper ty block

Use a property block to create user-defined get or set accessors. The property is read and write if both

the get and set accessors are defined, read-only if only the get accessor is defined, and write-only if

only the set accessor is defined.

You need to explicitly declare a data member to contain the property value.

indexed proper ty

A property block that you can use to get and set a property value that is specified by one or more

indexes.

You can create an indexed property that has either a user-defined property name or a default property

name. The name of a default index property is the name of the class in which the property is defined. To

declare a default property, specify the default keyword instead of a property name.

Explicitly declare a data member to contain the property value. For an indexed property, the data member is

typically an array or a collection.

type

The data type of the property value, and of the property itself.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/property-cpp-component-extensions.md

 Windows Runtime

 Requirements

 Common Language Runtime
 Syntax

modifier property type property_name;

modifier property type property_name {
 modifier void set(type);
 modifier type get();
}
modifier property type property_name[index-list, value] {
 modifier void set(index-list, value);
 modifier type get(index-list);

modifier property type default[index];
}

 Parameters

property_name

The name of the property.

access-modifier

An access qualifier. Valid qualifiers are static and virtual .

The get or set accessors need not agree on the virtual qualifier, but they must agree on the static

qualifier.

inheritance-modifier

An inheritance qualifier. Valid qualifiers are abstract and sealed .

index_list

A comma-delimited list of one or more indexes. Each index consists of an index type, and an optional identifier

that can be used in the property method body.

value

The value to assign to the property in a set operation, or retrieve in a get operation.

property_body

The property method body of the set or get accessor. The property_body can use the index_list to access

the underlying property data member, or as parameters in user-defined processing.

For more information, see Properties (C++/CX).

Compiler option: /ZW

modifier

A modifier that can be used on either a property declaration or a get/set accessor method. Possible values are

static and virtual .

type

The type of the value that is represented by the property.

property_name

Parameter(s) for the raise method; must match the signature of the delegate.

https://docs.microsoft.com/en-us/cpp/cppcx/properties-c-cx

 Remarks

 Requirements

index_list

A comma-delimited list of one or more indexes, specified in square brackets (the subscript operator, []). For

each index, specify a type and optionally an identifier that can be used in the property method body.

The first syntax example shows a simple property, which implicitly declares both a set and get method. The

compiler automatically creates a private field to store the value of the property.

The second syntax example shows a property block, which explicitly declares both a set and get method.

The third syntax example shows a customer-defined index property. An index property takes parameters in

addition to the value to be set or retrieved. Specify a name for the property. Unlike a simple property, the set

and get methods of an index property must be explicitly defined, and so you must specify a name for the

property.

The fourth syntax example shows a default property, which provides array-like access to an instance of the type.

The keyword, default , serves only to specify a default property. The name of the default property is the name

of the type in which the property is defined.

The property keyword can appear in a class, interface, or value type. A property can have a get function (read-

only), a set function (write-only), or both (read-write).

A property name can't match the name of the managed class that contains it. The return type of the getter

function must match the type of the last parameter of a corresponding setter function.

To client code, a property has the appearance of an ordinary data member, and can be written to or read from by

using the same syntax as a data member.

The get and set methods need not agree on the virtual modifier.

The accessibility of the get and set method can differ.

The definition of a property method can appear outside the class body, just like an ordinary method.

The get and the set method for a property shall agree on the static modifier.

A property is scalar if its get and set methods fit the following description:

The get method has no parameters, and has return type T .

The set method has a parameter of type T , and return type void .

There shall be only one scalar property declared in a scope with the same identifier. Scalar properties cannot be

overloaded.

When a property data member is declared, the compiler injects a data member—sometimes referred to as the

"backing store"—in the class. However, the name of the data member is of a form such that you can't reference

the member in the source as if it were an actual data member of the containing class. Use ildasm.exe to view the

metadata for your type and see the compiler-generated name for the property's backing store.

Different accessibility is allowed for the accessor methods in a property block. That is, the set method can be

public and the get method can be private . However, it's an error for an accessor method to have a less

restrictive accessibility than what is on the declaration of the property itself.

property is a context-sensitive keyword. For more information, see Context-sensitive keywords.

Compiler option: /clr

Examples

// mcppv2_property.cpp
// compile with: /clr
using namespace System;
public ref class C {
 int MyInt;
public:

 // property data member
 property String ^ Simple_Property;

 // property block
 property int Property_Block {

 int get();

 void set(int value) {
 MyInt = value;
 }
 }
};

int C::Property_Block::get() {
 return MyInt;
}

int main() {
 C ^ MyC = gcnew C();
 MyC->Simple_Property = "test";
 Console::WriteLine(MyC->Simple_Property);

 MyC->Property_Block = 21;
 Console::WriteLine(MyC->Property_Block);
}

test

21

 See also

The following example shows the declaration and use of a property data member and a property block. It also

shows that a property accessor can be defined out of class.

Component Extensions for .NET and UWP

safe_cast (C++/CLI and C++/CX)
 5/13/2022 • 3 minutes to read • Edit Online

 All Runtimes

 Syntax

[default]:: safe_cast< type-id >(expression)

 Windows Runtime

 Syntax

[default]:: safe_cast< type-id >(expression)

 Parameters

 Remarks

 Requirements

 Examples

The safe_cast operation returns the specified expression as the specified type, if successful; otherwise, throws

InvalidCastException .

(There are no remarks for this language feature that apply to all runtimes.)

safe_cast allows you to change the type of a specified expression. In situations where you fully expect a variable

or parameter to be convertible to a certain type, you can use safe_cast without a tr y-catch block to detect

programming errors during development. For more information, see Casting (C++/CX).

type-id

The type to convert expression to. A handle to a reference or value type, a value type, or a tracking reference to a

reference or value type.

expression

An expression that evaluates to a handle to a reference or value type, a value type, or a tracking reference to a

reference or value type.

safe_cast throws InvalidCastException if it cannot convert expression to the type specified by type-id. To catch

InvalidCastException , specify the /EH (Exception Handling Model) compiler option, and use a tr y/catch

statement.

Compiler option: /ZW

The following code example demonstrates how to use safe_cast with the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/safe-cast-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cppcx/casting-c-cx
https://docs.microsoft.com/en-us/cpp/build/reference/eh-exception-handling-model

// safe_cast_ZW.cpp
// compile with: /ZW /EHsc

using namespace default;
using namespace Platform;

interface class I1 {};
interface class I2 {};
interface class I3 {};

ref class X : public I1, public I2 {};

int main(Array<String^>^ args) {
 I1^ i1 = ref new X;
 I2^ i2 = safe_cast<I2^>(i1); // OK, I1 and I2 have common type: X
 // I2^ i3 = static_cast<I2^>(i1); C2440 use safe_cast instead
 try {
 I3^ i4 = safe_cast<I3^>(i1); // Fails because i1 is not derived from I3.
 }
 catch(InvalidCastException^ ic) {
 wprintf(L"Caught expected exception: %s\n", ic->Message);
 }
}

Caught expected exception: InvalidCastException

 Common Language Runtime

 Syntax

[cli]:: safe_cast< type-id >(expression)

 Parameters

 Remarks

safe_cast allows you to change the type of an expression and generate verifiable MSIL code.

type-id

A handle to a reference or value type, a value type, or a tracking reference to a reference or value type.

expression

An expression that evaluates to a handle to a reference or value type, a value type, or a tracking reference to a

reference or value type.

The expression safe_cast< type-id >(expression) converts the operand expression to an object of type type-

id.

The compiler will accept a static_cast in most places that it will accept a safe_cast. However, safe_cast is

guaranteed to produce verifiable MSIL, where as a static_cast could produce unverifiable MSIL. See Pure and

Verifiable Code (C++/CLI) and Peverify.exe (PEVerify Tool) for more information on verifiable code.

Like static_cast , safe_cast invokes user-defined conversions.

For more information about casts, see Casting Operators.

safe_cast does not apply a const_cast (cast away const).

safe_cast is in the cli namespace. See Platform, default, and cli Namespaces for more information.

https://docs.microsoft.com/en-us/cpp/cpp/static-cast-operator
https://docs.microsoft.com/en-us/cpp/dotnet/pure-and-verifiable-code-cpp-cli
https://docs.microsoft.com/en-us/dotnet/framework/tools/peverify-exe-peverify-tool
https://docs.microsoft.com/en-us/cpp/cpp/casting-operators

 Requirements

 Examples

// safe_cast.cpp
// compile with: /clr
using namespace System;

interface class I1 {};
interface class I2 {};
interface class I3 {};

ref class X : public I1, public I2 {};

int main() {
 I1^ i1 = gcnew X;
 I2^ i2 = safe_cast<I2^>(i1); // OK, I1 and I2 have common type: X
 // I2^ i3 = static_cast<I2^>(i1); C2440 use safe_cast instead
 try {
 I3^ i4 = safe_cast<I3^>(i1); // fail at runtime, no common type
 }
 catch(InvalidCastException^) {
 Console::WriteLine("Caught expected exception");
 }
}

Caught expected exception

 See also

For more information on safe_cast, see:

C-Style Casts with /clr (C++/CLI)

How to: Use safe_cast in C++/CLI

Compiler option: /clr

One example of where the compiler will not accept a static_cast but will accept a safe_cast is for casts

between unrelated interface types. With safe_cast, the compiler will not issue a conversion error and will

perform a check at runtime to see if the cast is possible

Component Extensions for .NET and UWP

https://docs.microsoft.com/en-us/cpp/dotnet/how-to-use-safe-cast-in-cpp-cli

String (C++/CLI and C++/CX)
 5/13/2022 • 4 minutes to read • Edit Online

 Windows Runtime

 Syntax

// compile with /ZW
using namespace Platform;
using namespace default;
 Platform::String^ MyString1 = "The quick brown fox";
 String^ MyString2 = "jumped over the lazy dog.";
 String^ MyString3 = "Hello, world!";

 Requirements

 Common Language Runtime

NOTE

The Windows Runtime and common language runtime represent strings as objects whose allocated memory is

managed automatically. That is, you are not required to explicitly discard the memory for a string when the

string variable goes out of scope or your application ends. To indicate that the lifetime of a string object is to be

managed automatically, declare the string type with the handle-to-object (^) modifier.

The Windows Runtime architecture requires that the String data type be located in the Platform namespace.

For your convenience, Visual C++ also provides the string data type, which is a synonym for

Platform::String , in the default namespace.

Compiler option: /ZW

When compiling with /clr , the compiler will convert string literals to strings of type String. To preserve

backward compatibility with existing code there are two exceptions to this:

Exception handling. When a string literal is thrown, the compiler will catch it as a string literal.

Template deduction. When a string literal is passed as a template argument, the compiler will not convert

it to a String. Note, string literals passed as a generic argument will be promoted to String.

The compiler also has built-in support for three operators, which you can override to customize their behavior :

System::String^ operator +(System::String, System::String);

System::String^ operator +(System::Object, System::String);

System::String^ operator +(System::String, System::Object);

When passed a String, the compiler will box, if necessary, and then concatenate the object (with ToString) with

the string.

The caret ("^") indicates that the declared variable is a handle to a C++/CLI managed object.

For more information see String and Character Literals.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/string-cpp-component-extensions.md
https://docs.microsoft.com/en-us/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/api/system.string
https://docs.microsoft.com/en-us/cpp/cpp/string-and-character-literals-cpp

Requirements

 Examples

// string_operators.cpp
// compile with: /clr
// In the following code, the caret ("^") indicates that the
// declared variable is a handle to a C++/CLI managed object.
using namespace System;

int main() {
 String^ a = gcnew String("abc");
 String^ b = "def"; // same as gcnew form
 Object^ c = gcnew String("ghi");

 char d[100] = "abc";

 // variables of System::String returning a System::String
 Console::WriteLine(a + b);
 Console::WriteLine(a + c);
 Console::WriteLine(c + a);

 // accessing a character in the string
 Console::WriteLine(a[2]);

 // concatenation of three System::Strings
 Console::WriteLine(a + b + c);

 // concatenation of a System::String and string literal
 Console::WriteLine(a + "zzz");

 // you can append to a System::String^
 Console::WriteLine(a + 1);
 Console::WriteLine(a + 'a');
 Console::WriteLine(a + 3.1);

 // test System::String^ for equality
 a += b;
 Console::WriteLine(a);
 a = b;
 if (a == b)
 Console::WriteLine("a and b are equal");

 a = "abc";
 if (a != b)
 Console::WriteLine("a and b are not equal");

 // System:String^ and tracking reference
 String^% rstr1 = a;
 Console::WriteLine(rstr1);

 // testing an empty System::String^
 String^ n;
 if (n == nullptr)
 Console::WriteLine("n is empty");
}

Compiler option: /clr

The following code example demonstrates concatenating and comparing strings.

abcdef

abcghi

ghiabc

c

abcdefghi

abczzz

abc1

abc97

abc3.1

abcdef

a and b are equal

a and b are not equal

abc

n is empty

The following sample shows that you can overload the compiler-provided operators, and that the compiler will

find a function overload based on the String type.

https://docs.microsoft.com/en-us/dotnet/api/system.string

// string_operators_2.cpp
// compile with: /clr
using namespace System;

// a string^ overload will be favored when calling with a String
void Test_Overload(const char * a) {
 Console::WriteLine("const char * a");
}
void Test_Overload(String^ a) {
 Console::WriteLine("String^ a");
}

// overload will be called instead of compiler defined operator
String^ operator +(String^ a, String^ b) {
 return ("overloaded +(String^ a, String^ b)");
}

// overload will be called instead of compiler defined operator
String^ operator +(Object^ a, String^ b) {
 return ("overloaded +(Object^ a, String^ b)");
}

// overload will be called instead of compiler defined operator
String^ operator +(String^ a, Object^ b) {
 return ("overloaded +(String^ a, Object^ b)");
}

int main() {
 String^ a = gcnew String("abc");
 String^ b = "def"; // same as gcnew form
 Object^ c = gcnew String("ghi");

 char d[100] = "abc";

 Console::WriteLine(a + b);
 Console::WriteLine(a + c);
 Console::WriteLine(c + a);

 Test_Overload("hello");
 Test_Overload(d);
}

overloaded +(String^ a, String^ b)

overloaded +(String^ a, Object^ b)

overloaded +(Object^ a, String^ b)

String^ a

const char * a

The following sample shows that the compiler distinguishes between native strings and String strings.

https://docs.microsoft.com/en-us/dotnet/api/system.string

// string_operators_3.cpp
// compile with: /clr
using namespace System;
int func() {
 throw "simple string"; // const char *
};

int func2() {
 throw "string" + "string"; // returns System::String
};

template<typename T>
void func3(T t) {
 Console::WriteLine(T::typeid);
}

int main() {
 try {
 func();
 }
 catch(char * e) {
 Console::WriteLine("char *");
 }

 try {
 func2();
 }
 catch(String^ str) {
 Console::WriteLine("String^ str");
 }

 func3("string"); // const char *
 func3("string" + "string"); // returns System::String
}

char *

String^ str

System.SByte*

System.String

 See also
Component Extensions for .NET and UWP

String and Character Literals

/clr (Common Language Runtime Compilation)

https://docs.microsoft.com/en-us/cpp/cpp/string-and-character-literals-cpp
https://docs.microsoft.com/en-us/cpp/build/reference/clr-common-language-runtime-compilation

sealed (C++/CLI and C++/CX)
 5/13/2022 • 2 minutes to read • Edit Online

NOTE

 All Runtimes

 Syntax

ref class identifier sealed {...};
virtual return-type identifier() sealed {...};

 Parameters

 Remarks

 Windows Runtime

 Requirements

 Common Language Runtime

 Requirements

sealed is a context-sensitive keyword for ref classes that indicates that a virtual member cannot be overridden,

or that a type cannot be used as a base type.

The ISO C++11 Standard language introduced the final keyword. Use final on standard classes, and sealed on ref

classes.

identifier

The name of the function or class.

return-type

The type that's returned by a function.

In the first syntax example, a class is sealed. In the second example, a virtual function is sealed.

Use the sealed keyword for ref classes and their virtual member functions. For more information, see Override

Specifiers and Native Compilations.

You can detect at compile time whether a type is sealed by using the __is_sealed(type) type trait. For more

information, see Compiler Support for Type Traits.

sealed is a context-sensitive keyword. For more information, see Context-Sensitive Keywords.

See Ref classes and structs.

Compiler option: /ZW

(There are no remarks for this language feature that apply to only the common language runtime.)

Compiler option: /clr

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/sealed-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cpp/final-specifier
https://docs.microsoft.com/en-us/cpp/dotnet/how-to-declare-override-specifiers-in-native-compilations-cpp-cli
https://docs.microsoft.com/en-us/cpp/cppcx/ref-classes-and-structs-c-cx

 Examples

// sealed_keyword.cpp
// compile with: /clr
interface struct I1 {
 virtual void f();
 virtual void g();
};

ref class X : I1 {
public:
 virtual void f() {
 System::Console::WriteLine("X::f override of I1::f");
 }

 virtual void g() sealed {
 System::Console::WriteLine("X::f override of I1::g");
 }
};

ref class Y : public X {
public:
 virtual void f() override {
 System::Console::WriteLine("Y::f override of I1::f");
 }

 /*
 // the following override generates a compiler error
 virtual void g() override {
 System::Console::WriteLine("Y::g override of I1::g");
 }
 */
};

int main() {
 I1 ^ MyI = gcnew X;
 MyI -> f();
 MyI -> g();

 I1 ^ MyI2 = gcnew Y;
 MyI2 -> f();
}

X::f override of I1::f
X::f override of I1::g
Y::f override of I1::f

This following code example shows the effect of sealed on a virtual member.

The next code example shows how to mark a class as sealed.

// sealed_keyword_2.cpp
// compile with: /clr
interface struct I1 {
 virtual void f();
};

ref class X sealed : I1 {
public:
 virtual void f() override {}
};

ref class Y : public X { // C3246 base class X is sealed
public:
 virtual void f() override {}
};

 See also
Component Extensions for .NET and UWP

typeid (C++/CLI and C++/CX)
 5/13/2022 • 2 minutes to read • Edit Online

NOTE

 All Runtimes
 Syntax

T::typeid

 Parameters

 Windows Runtime
 Syntax

Platform::Type^ type = T::typeid;

 Parameters

 Remarks

 Requirements

 Common Language Runtime
 Syntax

System::Type^ type = T::typeid;

 Parameters

 Remarks

Gets a value that indicates the type of an object.

This topic refers to the C++ Component Extensions version of typeid. For the ISO C++ version of this keyword, see

typeid Operator.

T

A type name.

T

A type name.

In C++/CX, typeid returns a Platform::Type that is constructed from runtime type information.

Compiler option: /ZW

type

The name of a type (abstract declarator) for which you want the System::Type object.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/typeid-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cpp/typeid-operator
https://docs.microsoft.com/en-us/cpp/cppcx/platform-type-class

 Requirements

 Examples

// keyword__typeid.cpp
// compile with: /clr
using namespace System;

ref struct G {
 int i;
};

int main() {
 G ^ pG = gcnew G;
 Type ^ pType = pG->GetType();
 Type ^ pType2 = G::typeid;

 if (pType == pType2)
 Console::WriteLine("typeid and GetType returned the same System::Type");
 Console::WriteLine(G::typeid);

 typedef float* FloatPtr;
 Console::WriteLine(FloatPtr::typeid);
}

typeid and GetType returned the same System::Type
G

System.Single*

typeid is used to get the Type for a type at compile time.

typeid is similar to getting the System::Type for a type at run time using GetType or GetType. However,

typeid only accepts a type name as a parameter. If you want to use an instance of a type to get its

System::Type name, use GetType .

typeid must be able to evaluate a type name (type) at compile time, whereas GetType evaluates the type to

return at run time.

typeid can take a native type name or common language runtime alias for the native type name; see .NET

Framework Equivalents to C++ Native Types (C++/CLI) for more information.

typeid also works with native types, although it will still return a System::Type . To get a type_info structure, use

typeid Operator.

Compiler option: /clr

The following example compares the typeid keyword to the GetType() member.

The following sample shows that a variable of type System::Type can be used to get the attributes on a type. It

also shows that for some types, you will have to create a typedef to use typeid .

https://docs.microsoft.com/en-us/dotnet/api/system.type
https://docs.microsoft.com/en-us/dotnet/api/system.type.gettype
https://docs.microsoft.com/en-us/dotnet/api/system.object.gettype
https://docs.microsoft.com/en-us/cpp/dotnet/managed-types-cpp-cli
https://docs.microsoft.com/en-us/cpp/cpp/typeid-operator

// keyword__typeid_2.cpp
// compile with: /clr
using namespace System;
using namespace System::Security;
using namespace System::Security::Permissions;

typedef int ^ handle_to_int;
typedef int * pointer_to_int;

public ref class MyClass {};

class MyClass2 {};

[attribute(AttributeTargets::All)]
ref class AtClass {
public:
 AtClass(Type ^) {
 Console::WriteLine("in AtClass Type ^ constructor");
 }
};

[attribute(AttributeTargets::All)]
ref class AtClass2 {
public:
 AtClass2() {
 Console::WriteLine("in AtClass2 constructor");
 }
};

// Apply the AtClass and AtClass2 attributes to class B
[AtClass(MyClass::typeid), AtClass2]
[AttributeUsage(AttributeTargets::All)]
ref class B : Attribute {};

int main() {
 Type ^ MyType = B::typeid;

 Console::WriteLine(MyType->IsClass);

 array<Object^>^ MyArray = MyType -> GetCustomAttributes(true);
 for (int i = 0 ; i < MyArray->Length ; i++)
 Console::WriteLine(MyArray[i]);

 if (int::typeid != pointer_to_int::typeid)
 Console::WriteLine("int::typeid != pointer_to_int::typeid, as expected");

 if (int::typeid == handle_to_int::typeid)
 Console::WriteLine("int::typeid == handle_to_int::typeid, as expected");
}

True

in AtClass2 constructor

in AtClass Type ^ constructor

AtClass2

System.AttributeUsageAttribute

AtClass

int::typeid != pointer_to_int::typeid, as expected

int::typeid == handle_to_int::typeid, as expected

 See also
Component Extensions for .NET and UWP

User-Defined Attributes (C++/CLI and C++/CX)
 5/13/2022 • 3 minutes to read • Edit Online

 Windows Runtime

 Requirements

 Common Language Runtime

 Requirements

 Examples

// user_defined_attributes.cpp
// compile with: /clr /c
using namespace System;

[AttributeUsage(AttributeTargets::All)]
ref struct Attr : public Attribute {
 Attr(bool i){}
 Attr(){}
};

[Attr]
ref class MyClass {};

// extending_metadata_b.cpp
// compile with: /clr
using namespace System;

C++/CLI and C++/CX enable you to create platform-specific attributes that extend the metadata of an interface,

class or structure, method, parameter, or enumeration. These attributes are distinct from the standard C++

attributes.

You can apply C++/CX attributes to properties, but not to constructors or methods.

Compiler option: /ZW

The information and syntax presented in this topic is meant to supersede the information presented in attribute.

You can define a custom attribute by defining a type and making Attribute a base class for the type and

optionally applying the AttributeUsageAttribute attribute.

For more information, see:

Attribute Targets

Attribute Parameter Types

For information on signing assemblies in Visual C++, see Strong Name Assemblies (Assembly Signing)

(C++/CLI).

Compiler option: /clr

The following sample shows how to define a custom attribute.

The following example illustrates some important features of custom attributes. For example, this example

shows a common usage of the custom attributes: instantiating a server that can fully describe itself to clients.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/user-defined-attributes-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/cpp/attributes
https://docs.microsoft.com/en-us/cpp/windows/attributes/attribute
https://docs.microsoft.com/en-us/dotnet/api/system.attribute
https://docs.microsoft.com/en-us/dotnet/api/system.attributeusageattribute
https://docs.microsoft.com/en-us/cpp/dotnet/strong-name-assemblies-assembly-signing-cpp-cli

using namespace System;
using namespace System::Reflection;

public enum class Access { Read, Write, Execute };

// Defining the Job attribute:
[AttributeUsage(AttributeTargets::Class, AllowMultiple=true)]
public ref class Job : Attribute {
public:
 property int Priority {
 void set(int value) { m_Priority = value; }
 int get() { return m_Priority; }
 }

 // You can overload constructors to specify Job attribute in different ways
 Job() { m_Access = Access::Read; }
 Job(Access a) { m_Access = a; }
 Access m_Access;

protected:
 int m_Priority;
};

interface struct IService {
 void Run();
};

 // Using the Job attribute:
 // Here we specify that QueryService is to be read only with a priority of 2.
 // To prevent namespace collisions, all custom attributes implicitly
 // end with "Attribute".

[Job(Access::Read, Priority=2)]
ref struct QueryService : public IService {
 virtual void Run() {}
};

// Because we said AllowMultiple=true, we can add multiple attributes
[Job(Access::Read, Priority=1)]
[Job(Access::Write, Priority=3)]
ref struct StatsGenerator : public IService {
 virtual void Run() {}
};

int main() {
 IService ^ pIS;
 QueryService ^ pQS = gcnew QueryService;
 StatsGenerator ^ pSG = gcnew StatsGenerator;

 // use QueryService
 pIS = safe_cast<IService ^>(pQS);

 // use StatsGenerator
 pIS = safe_cast<IService ^>(pSG);

 // Reflection
 MemberInfo ^ pMI = pIS->GetType();
 array <Object ^ > ^ pObjs = pMI->GetCustomAttributes(false);

 // We can now quickly and easily view custom attributes for an
 // Object through Reflection */
 for(int i = 0; i < pObjs->Length; i++) {
 Console::Write("Service Priority = ");
 Console::WriteLine(static_cast<Job^>(pObjs[i])->Priority);
 Console::Write("Service Access = ");
 Console::WriteLine(static_cast<Job^>(pObjs[i])->m_Access);
 }
}

Service Priority = 0

Service Access = Write

Service Priority = 3

Service Access = Write

Service Priority = 1

Service Access = Read

// extending_metadata_e.cpp
// compile with: /clr /c
using namespace System;
[AttributeUsage(AttributeTargets::Class | AttributeTargets::Method)]
public ref class AnotherAttr : public Attribute {
public:
 AnotherAttr(array<Object^>^) {}
 array<Object^>^ var1;
};

// applying the attribute
[AnotherAttr(gcnew array<Object ^> { 3.14159, "pi" }, var1 = gcnew array<Object ^> { "a", "b" })]
public ref class SomeClass {};

// extending_metadata_f.cpp
// compile with: /clr /c
using namespace System;
ref struct abc {};

[AttributeUsage(AttributeTargets::All)]
ref struct A : Attribute {
 A(Type^) {}
 A(String ^) {}
 A(int) {}
};

[A(abc::typeid)]
ref struct B {};

 See also

The Object^ type replaces the variant data type. The following example defines a custom attribute that takes an

array of Object^ as parameters.

Attribute arguments must be compile-time constants; in most cases, they should be constant literals.

See typeid for information on how to return a value of System::Type from a custom attribute block.

The runtime requires that the public part of the custom attribute class must be serializable. When authoring

custom attributes, named arguments of your custom attribute are limited to compile-time constants. (Think of it

as a sequence of bits appended to your class layout in the metadata.)

Component Extensions for .NET and UWP

Attribute Parameter Types (C++/CLI and C++/CX)
 5/13/2022 • 2 minutes to read • Edit Online

 Example: Attribute parameter types
 Code

// attribute_parameter_types.cpp
// compile with: /clr /c
using namespace System;
ref struct AStruct {};

[AttributeUsage(AttributeTargets::ReturnValue)]
ref struct Attr : public Attribute {
 Attr(AStruct ^ i){}
 Attr(bool i){}
 Attr(){}
};

ref struct MyStruct {
 static AStruct ^ x = gcnew AStruct;
 [returnvalue:Attr(x)] int Test() { return 0; } // C3104
 [returnvalue:Attr] int Test2() { return 0; } // OK
 [returnvalue:Attr(true)] int Test3() { return 0; } // OK
};

 Example: Unnamed arguments precede named arguments
 Description

Values passed to attributes must be known to the compiler at compile time. Attribute parameters can be of the

following types:

bool

char , unsigned char

short , unsigned short

int , unsigned int

long , unsigned long

__int64 , unsigned __int64

float , double

wchar_t

char* or wchar_t* or System::String*

System::Type ^

System::Object ^

enum

When specifying attributes, all unnamed (positional) arguments must precede any named arguments.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/attribute-parameter-types-cpp-component-extensions.md

 Code

// extending_metadata_c.cpp
// compile with: /clr /c
using namespace System;
[AttributeUsage(AttributeTargets::Class)]
ref class MyAttr : public Attribute {
public:
 MyAttr() {}
 MyAttr(int i) {}
 property int Priority;
 property int Version;
};

[MyAttr]
ref class ClassA {}; // No arguments

[MyAttr(Priority = 1)]
ref class ClassB {}; // Named argument

[MyAttr(123)]
ref class ClassC {}; // Positional argument

[MyAttr(123, Version = 1)]
ref class ClassD {}; // Positional and named

 Example: One-dimensional array attribute parameter
 Description

 Code

// extending_metadata_d.cpp
// compile with: /clr /c
using namespace System;

[AttributeUsage(AttributeTargets::Class)]
public ref struct ABC : public Attribute {
 ABC(array<int>^){}
 array<double> ^ param;
};

[ABC(gcnew array<int> {1,2,3}, param = gcnew array<double>{2.71, 3.14})]
ref struct AStruct{};

 See also

Attribute parameters can be one-dimensional arrays of the previous types.

User-Defined Attributes

Attribute Targets (C++/CLI and C++/CX)
 5/13/2022 • 3 minutes to read • Edit Online

Attribute usage specifiers let you specify attribute targets. Each attribute is defined to apply to certain language

elements. For example, an attribute might be defined to apply only to classes and structs. The following list

shows the possible syntactic elements on which a custom attribute can be used. Combinations of these values

(using logical or) may be used.

To specify attribute target, to pass one or more AttributeTargets enumerators to AttributeUsageAttribute when

defining the attribute.

The following is a list of the valid attribute targets:

using namespace System;
[AttributeUsage(AttributeTargets::All)]
ref class Attr : public Attribute {};

[assembly:Attr];

using namespace System;
[AttributeUsage(AttributeTargets::Assembly)]
ref class Attr : public Attribute {};

[assembly:Attr];

using namespace System;
[AttributeUsage(AttributeTargets::Module)]
ref class Attr : public Attribute {};

[module:Attr];

using namespace System;
[AttributeUsage(AttributeTargets::Class)]
ref class Attr : public System::Attribute {};

[Attr] // same as [class:Attr]
ref class MyClass {};

All (applies to all constructs)

Assembly (applies to an assembly as a whole)

Module (applies to a module as a whole)

Class

Struct

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/attribute-targets-cpp-component-extensions.md
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets
https://docs.microsoft.com/en-us/dotnet/api/system.attributeusageattribute

using namespace System;
[AttributeUsage(AttributeTargets::Struct)]
ref class Attr : public Attribute {};

[Attr] // same as [struct:Attr]
value struct MyStruct{};

using namespace System;
[AttributeUsage(AttributeTargets::Enum)]
ref class Attr : public Attribute {};

[Attr] // same as [enum:Attr]
enum struct MyEnum{e, d};

using namespace System;
[AttributeUsage(AttributeTargets::Constructor)]
ref class Attr : public Attribute {};

ref struct MyStruct{
[Attr] MyStruct(){} // same as [constructor:Attr]
};

using namespace System;
[AttributeUsage(AttributeTargets::Method)]
ref class Attr : public Attribute {};

ref struct MyStruct{
[Attr] void Test(){} // same as [method:Attr]
};

using namespace System;
[AttributeUsage(AttributeTargets::Property)]
ref class Attr : public Attribute {};

ref struct MyStruct{
[Attr] property int Test; // same as [property:Attr]
};

using namespace System;
[AttributeUsage(AttributeTargets::Field)]
ref class Attr : public Attribute {};

ref struct MyStruct{
[Attr] int Test; // same as [field:Attr]
};

enum

Constructor

Method

Property

Field

Event

[Attr] int MyFn(double x)...

using namespace System;
[AttributeUsage(AttributeTargets::Event)]
ref class Attr : public Attribute {};

delegate void ClickEventHandler(int, double);

ref struct MyStruct{
[Attr] event ClickEventHandler^ OnClick; // same as [event:Attr]
};

using namespace System;
[AttributeUsage(AttributeTargets::Interface)]
ref class Attr : public Attribute {};

[Attr] // same as [event:Attr]
interface struct MyStruct{};

using namespace System;
[AttributeUsage(AttributeTargets::Parameter)]
ref class Attr : public Attribute {};

ref struct MyStruct{
void Test([Attr] int i);
void Test2([parameter:Attr] int i);
};

using namespace System;
[AttributeUsage(AttributeTargets::Delegate)]
ref class Attr : public Attribute {};

[Attr] delegate void Test();
[delegate:Attr] delegate void Test2();

using namespace System;
[AttributeUsage(AttributeTargets::ReturnValue)]
ref class Attr : public Attribute {};

ref struct MyStruct {
// Note required specifier
[returnvalue:Attr] int Test() { return 0; }
};

Interface

Parameter

Delegate

ReturnValue

Typically, an attribute directly precedes the language element to which it applies. In some cases, however, the

position of an attribute is not sufficient to determine the attribute's intended target. Consider this example:

Syntactically, there is no way to tell if the attribute is intended to apply to the method or to the method's return

[returnvalue:Attr] int MyFn(double x)... // applies to return value

[returnvalue:Attr1, Attr2]

[returnvalue:Attr1, returnvalue:Attr2]

 Example
 Description

 Code

value (in this case, it defaults to the method). In such cases, an attribute usage specifier may be used. For

example, to make the attribute apply to the return value, use the returnvalue specifier, as follows:

Attribute usage specifiers are required in the following situations:

[method:Attr] int MyFn(double x)... // Attr applies to method
[returnvalue:Attr] int MyFn(double x)...// Attr applies to return value
[Attr] int MyFn(double x)... // default: method

[method:MyAttr(123)] property int Property()
[property:MyAttr(123)] property int Property()
[MyAttr(123)] property int get_MyPropy() // default: property

delegate void MyDel();
ref struct X {
 [field:MyAttr(123)] event MyDel* MyEvent; //field
 [event:MyAttr(123)] event MyDel* MyEvent; //event
 [MyAttr(123)] event MyDel* MyEvent; // default: event
}

To specify an assembly- or module-level attribute.

To specify that an attribute applies to a method's return value, not the method:

To specify that an attribute applies to a property's accessor, not the property:

To specify that an attribute applies to an event's accessor, not the event:

An attribute usage specifier applies only to the attribute that immediately follows it; that is,

is different from

This sample shows how to specify multiple targets.

using namespace System;
[AttributeUsage(AttributeTargets::Class | AttributeTargets::Struct, AllowMultiple = true)]
ref struct Attr : public Attribute {
 Attr(bool i){}
 Attr(){}
};

[Attr]
ref class MyClass {};

[Attr]
[Attr(true)]
value struct MyStruct {};

 See also
User-Defined Attributes

Extensions That Are Specific to C++/CLI
 5/13/2022 • 2 minutes to read • Edit Online

 See also

The following language features apply only to C++/CLI:

__identifier (C++/CLI)

C-Style Casts with /clr (C++/CLI)

interior_ptr (C++/CLI)

pin_ptr (C++/CLI)

Type Forwarding (C++/CLI)

Variable Argument Lists (...) (C++/CLI)

Component Extensions for .NET and UWP

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/extensions-that-are-specific-to-cpp-cli.md

__identifier (C++/CLI)
 5/13/2022 • 2 minutes to read • Edit Online

 All Platforms
 Syntax

__identifier(C++_keyword)

 Remarks

 Windows Runtime
 Requirements

 Examples

// identifier_template.cs
// compile with: /target:library
public class template {
 public void Run() { }
}

// keyword__identifier.cpp
// compile with: /ZW
#using <identifier_template.dll>
int main() {
 __identifier(template)^ pTemplate = ref new __identifier(template)();
 pTemplate->Run();
}

 Common Language Runtime
 Remarks

 Requirements

 Examples

Enables the use of C++ keywords as identifiers.

Use of the __identifier keyword for identifiers that are not keywords is permitted, but strongly discouraged as

a matter of style.

Compiler option: /ZW

Example

In the following example, a class named template is created in C# and distributed as a DLL. In the C++/CLI

program that uses the template class, the __identifier keyword conceals the fact that template is a standard

C++ keyword.

The __identifier keyword is valid with the /clr compiler option.

Compiler option: /clr

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/identifier-cpp-cli.md

// identifier_template.cs
// compile with: /target:library
public class template {
 public void Run() { }
}

// keyword__identifier.cpp
// compile with: /clr
#using <identifier_template.dll>

int main() {
 __identifier(template) ^pTemplate = gcnew __identifier(template)();
 pTemplate->Run();
}

 See also

In the following example, a class named template is created in C# and distributed as a DLL. In the C++/CLI

program that uses the template class, the __identifier keyword conceals the fact that template is a standard

C++ keyword.

Component Extensions for .NET and UWP

Component Extensions for .NET and UWP

C-Style Casts with /clr (C++/CLI)
 5/13/2022 • 2 minutes to read • Edit Online

 Remarks

// cstyle_casts_1.cpp
// compile with: /clr
using namespace System;

ref struct R {};
int main() {
 const R^ constrefR = gcnew R();
 R^ nonconstR = (R^)(constrefR);
}

// cstyle_casts_2.cpp
// compile with: /clr
using namespace System;
int main() {
 Object ^ o = "hello";
 String ^ s = (String^)o;
}

The following topic applies only to the Common Language Runtime.

When used with CLR types, the compiler attempts to map C-style cast to one of the casts listed below, in the

following order :

1. const_cast

2. safe_cast

3. safe_cast plus const_cast

4. static_cast

5. static_cast plus const_cast

If none of the casts listed above is valid, and if the type of the expression and the target type are CLR reference

types, C-style cast maps to a runtime-check (castclass MSIL instruction). Otherwise, a C-style cast is considered

invalid and the compiler issues an error.

A C-style cast is not recommended. When compiling with /clr (Common Language Runtime Compilation), use

safe_cast.

The following sample shows a C-style cast that maps to a const_cast .

The following sample shows a C-style cast that maps to a safe_cast.

The following sample shows a C-style cast that maps to a safe_cast plus const_cast .

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/c-style-casts-with-clr-cpp-cli.md
https://docs.microsoft.com/en-us/cpp/build/reference/clr-common-language-runtime-compilation

// cstyle_casts_3.cpp
// compile with: /clr
using namespace System;

ref struct R {};
ref struct R2 : public R {};

int main() {
 const R^ constR2 = gcnew R2();
 try {
 R2^ b2DR = (R2^)(constR2);
 }
 catch(InvalidCastException^ e) {
 System::Console::WriteLine("Invalid Exception");
 }
}

// cstyle_casts_4.cpp
// compile with: /clr
using namespace System;

struct N1 {};
struct N2 {
 operator N1() {
 return N1();
 }
};

int main() {
 N2 n2;
 N1 n1 ;
 n1 = (N1)n2;
}

// cstyle_casts_5.cpp
// compile with: /clr
using namespace System;
struct N1 {};

struct N2 {
 operator const N1*() {
 static const N1 n1;
 return &n1;
 }
};

int main() {
 N2 n2;
 N1* n1 = (N1*)(const N1*)n2; // const_cast + static_cast
}

The following sample shows a C-style cast that maps to a static_cast .

The following sample shows a C-style cast that maps to a static_cast plus const_cast .

The following sample shows a C-style cast that maps to a run-time check.

// cstyle_casts_6.cpp
// compile with: /clr
using namespace System;

ref class R1 {};
ref class R2 {};

int main() {
 R1^ r = gcnew R1();
 try {
 R2^ rr = (R2^)(r);
 }
 catch(System::InvalidCastException^ e) {
 Console::WriteLine("Caught expected exception");
 }
}

// cstyle_casts_7.cpp
// compile with: /clr
using namespace System;
int main() {
 String^s = S"hello";
 int i = (int)s; // C2440
}

 Requirements

 See also

The following sample shows an invalid C-style cast, which causes the compiler to issue an error.

Compiler option: /clr

Component Extensions for .NET and UWP

interior_ptr (C++/CLI)
 5/13/2022 • 2 minutes to read • Edit Online

 All Runtimes

 Windows Runtime

 Requirements

 Common Language Runtime

 Syntax

cli::interior_ptr<cv_qualifier type> var = &initializer;

 Parameters

 Remarks

An interior pointer declares a pointer to inside a reference type, but not to the object itself. An interior pointer

can point to a reference handle, value type, boxed type handle, member of a managed type, or to an element of

a managed array.

(There are no remarks for this language feature that apply to all runtimes.)

(There are no remarks for this language feature that apply to only the Windows Runtime.)

Compiler option: /ZW

The following syntax example demonstrates an interior pointer.

cv_qualifier

const or volatile qualifiers.

type

The type of initializer.

var

The name of the inter ior_ptr variable.

initializer

A member of a reference type, element of a managed array, or any other object that you can assign to a native

pointer.

A native pointer is not able to track an item as its location changes on the managed heap, which results from the

garbage collector moving instances of an object. In order for a pointer to correctly refer to the instance, the

runtime needs to update the pointer to the newly positioned object.

An inter ior_ptr represents a superset of the functionality of a native pointer. Therefore, anything that can be

assigned to a native pointer can also be assigned to an inter ior_ptr . An interior pointer is permitted to perform

the same set of operations as native pointers, including comparison and pointer arithmetic.

An interior pointer can only be declared on the stack. An interior pointer cannot be declared as a member of a

class.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/interior-ptr-cpp-cli.md

 Requirements

 Examples

// interior_ptr.cpp
// compile with: /clr
using namespace System;

ref class MyClass {
public:
 int data;
};

int main() {
 MyClass ^ h_MyClass = gcnew MyClass;
 h_MyClass->data = 1;
 Console::WriteLine(h_MyClass->data);

 interior_ptr<int> p = &(h_MyClass->data);
 *p = 2;
 Console::WriteLine(h_MyClass->data);

 // alternatively
 interior_ptr<MyClass ^> p2 = &h_MyClass;
 (*p2)->data = 3;
 Console::WriteLine((*p2)->data);
}

1
2
3

 See also

Since interior pointers exist only on the stack, taking the address of an interior pointer yields an unmanaged

pointer.

inter ior_ptr has an implicit conversion to bool , which allows for its use in conditional statements.

For information on how to declare an interior pointer that points into an object that cannot be moved on the

garbage-collected heap, see pin_ptr.

inter ior_ptr is in the cli namespace. See Platform, default, and cli Namespaces for more information.

For more information on interior pointers, see

How to: Declare and Use Interior Pointers and Managed Arrays (C++/CLI)

How to: Declare Value Types with the interior_ptr Keyword (C++/CLI)

How to: Overload Functions with Interior Pointers and Native Pointers (C++/CLI)

How to: Declare Interior Pointers with the const Keyword (C++/CLI)

Compiler option: /clr

The following sample shows how to declare and use an interior pointer into a reference type.

Component Extensions for .NET and UWP

How to: Declare and Use Interior Pointers and
Managed Arrays (C++/CLI)

 5/13/2022 • 2 minutes to read • Edit Online

IMPORTANT

 Example
 Code

// interior_ptr_arrays.cpp
// compile with: /clr
#define SIZE 10

int main() {
 // declare the array
 array<int>^ arr = gcnew array<int>(SIZE);

 // initialize the array
 for (int i = 0 ; i < SIZE ; i++)
 arr[i] = i + 1;

 // create an interior pointer into the array
 interior_ptr<int> ipi = &arr[0];

 System::Console::WriteLine("1st element in arr holds: {0}", arr[0]);
 System::Console::WriteLine("ipi points to memory address whose value is: {0}", *ipi);

 ipi++;
 System::Console::WriteLine("after incrementing ipi, it points to memory address whose value is: {0}",
*ipi);
}

1st element in arr holds: 1
ipi points to memory address whose value is: 1
after incrementing ipi, it points to memory address whose value is: 2

 See also

The following C++/CLI sample shows how you can declare and use an interior pointer to an array.

This language feature is supported by the /clr compiler option, but not by the /ZW compiler option.

interior_ptr (C++/CLI)

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/how-to-declare-and-use-interior-pointers-and-managed-arrays-cpp-cli.md

How to: Declare Value Types with the interior_ptr
Keyword (C++/CLI)

 5/13/2022 • 2 minutes to read • Edit Online

IMPORTANT

 Example: interior_ptr with value type
 Description

 Code

// interior_ptr_value_types.cpp
// compile with: /clr
value struct V {
 V(int i) : data(i){}
 int data;
};

int main() {
 V v(1);
 System::Console::WriteLine(v.data);

 // pointing to a value type
 interior_ptr<V> pv = &v;
 pv->data = 2;

 System::Console::WriteLine(v.data);
 System::Console::WriteLine(pv->data);

 // pointing into a value type
 interior_ptr<int> pi = &v.data;
 *pi = 3;
 System::Console::WriteLine(*pi);
 System::Console::WriteLine(v.data);
 System::Console::WriteLine(pv->data);
}

1
2
2
3
3
3

 Example: this pointer
 Description

An inter ior_ptr can be used with a value type.

This language feature is supported by the /clr compiler option, but not by the /ZW compiler option.

The following C++/CLI sample shows how to use an inter ior_ptr with a value type.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/how-to-declare-value-types-with-the-interior-ptr-keyword-cpp-cli.md

 Code

// interior_ptr_value_types_this.cpp
// compile with: /clr /LD
value struct V {
 int data;
 void f() {
 interior_ptr<V> pv1 = this;
 // V* pv2 = this; error
 }
};

 Example: address-of operator
 Description

 Code

// interior_ptr_value_static.cpp
// compile with: /clr
using namespace System;
value struct V { int i; };

ref struct G {
 static V v = {22};
 static int i = 23;
 static String^ pS = "hello";
};

int main() {
 interior_ptr<int> p1 = &G::v.i;
 Console::WriteLine(*p1);

 interior_ptr<int> p2 = &G::i;
 Console::WriteLine(*p2);

 interior_ptr<String^> p3 = &G::pS;
 Console::WriteLine(*p3);
}

22
23
hello

 See also

In a value type, the this pointer evaluates to an interior_ptr.

In the body of a non-static member-function of a value type V , this is an expression of type interior_ptr<V>

whose value is the address of the object for which the function is called.

The following sample shows how to use the address-of operator with static members.

The address of a static Visual C++ type member yields a native pointer. The address of a static value type

member is a managed pointer because value type member is allocated on the runtime heap and can be moved

by the garbage collector.

interior_ptr (C++/CLI)

How to: Overload Functions with Interior Pointers
and Native Pointers (C++/CLI)

 5/13/2022 • 2 minutes to read • Edit Online

IMPORTANT

 Example
 Code

// interior_ptr_overload.cpp
// compile with: /clr
using namespace System;

// C++ class
struct S {
 int i;
};

// managed class
ref struct G {
 int i;
};

// can update unmanaged storage
void f(int* pi) {
 *pi = 10;
 Console::WriteLine("in f(int* pi)");
}

// can update managed storage
void f(interior_ptr<int> pi) {
 *pi = 10;
 Console::WriteLine("in f(interior_ptr<int> pi)");
}

int main() {
 S *pS = new S; // C++ heap
 G ^pG = gcnew G; // common language runtime heap
 f(&pS->i);
 f(&pG->i);
};

in f(int* pi)
in f(interior_ptr<int> pi)

 See also

Functions can be overloaded depending on whether the parameter type is an interior pointer or a native pointer.

This language feature is supported by the /clr compiler option, but not by the /ZW compiler option.

interior_ptr (C++/CLI)

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/how-to-overload-functions-with-interior-pointers-and-native-pointers-cpp-cli.md

How to: Declare Interior Pointers with the const
Keyword (C++/CLI)

 5/13/2022 • 2 minutes to read • Edit Online

IMPORTANT

 Example

The following sample shows how to use const in the declaration of an interior pointer.

This language feature is supported by the /clr compiler option, but not by the /ZW compiler option.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/how-to-declare-interior-pointers-with-the-const-keyword-cpp-cli.md

// interior_ptr_const.cpp
// compile with: /clr
using namespace System;
value struct V {
 int i;
};

ref struct G {
 V v;
 String ^ msg;
};

interior_ptr<int> f(interior_ptr<V> pv) {
 return &(pv->i);
}

int main() {
 int n = -1;
 int o = -1;
 interior_ptr<int> pn1 = &n;
 *pn1 = 50;

 V v;
 v.i = 101;
 V * npV = &v; // ok: &v yields a pointer to the native heap

 interior_ptr<int> pn2 = &n;
 interior_ptr<V> pV = &(v);
 pn2 = f(pV);
 *pn2 = 50;

 G ^pG = gcnew G;
 pV = &(pG->v); // ok: pV is an interior pointer

 interior_ptr<int const> pn3 = &n;
 // *pn3 = 5; error because pn3 cannot be dereferenced and changed
 pn3 = &o; // OK, can change the memory location

 interior_ptr<int> const pn4 = &n;
 *pn4 = 5; // OK because you can dereference and change pn4
 // pn4 = &o; error cannot change the memory location

 const interior_ptr<const int> pn5 = &n;
 // *pn5 = 5; error cannot dereference and change pn5
 // pn5 = &o; error cannot change the memory location

 const G ^ h_G = gcnew G; // object is const, cannot modify any members of h_G or call any non-const
methods
 // h_G->msg = "test"; error h_G is const
 interior_ptr<String^ const> int_ptr_G = &(h_G->msg);

 G ^ const h_G2 = gcnew G; // interior pointers to this obejct cannot be dereferenced and changed
 h_G2->msg = "test";
 interior_ptr<String^ const> int_ptr_G2 = &(h_G->msg);
};

 See also
interior_ptr (C++/CLI)

pin_ptr (C++/CLI)
 5/13/2022 • 4 minutes to read • Edit Online

 All Runtimes

 Windows Runtime

 Common Language Runtime

 Syntax

[cli::]pin_ptr<cv_qualifiertype>var = &initializer;

 Parameters

 Remarks

Declares a pinning pointer, which is used only with the common language runtime.

(There are no remarks for this language feature that apply to all runtimes.)

(This language feature is not supported in the Windows Runtime.)

A pinning pointer is an interior pointer that prevents the object pointed to from moving on the garbage-

collected heap. That is, the value of a pinning pointer is not changed by the common language runtime. This is

required when you pass the address of a managed class to an unmanaged function so that the address will not

change unexpectedly during resolution of the unmanaged function call.

cv_qualifier

const or volatile qualifiers. By default, a pinning pointer is volatile . It is redundant but not an error to

declare a pinning pointer volatile .

type

The type of initializer.

var

The name of the pin_ptr variable.

initializer

A member of a reference type, element of a managed array, or any other object that you can assign to a native

pointer.

A pin_ptr represents a superset of the functionality of a native pointer. Therefore, anything that can be assigned

to a native pointer can also be assigned to a pin_ptr . An interior pointer is permitted to perform the same set of

operations as native pointers, including comparison and pointer arithmetic.

An object or sub-object of a managed class can be pinned, in which case the common language runtime will not

move it during garbage collection. The principal use of this is to pass a pointer to managed data as an actual

parameter of an unmanaged function call. During a collection cycle, the runtime will inspect the metadata

created for the pinning pointer and will not move the item it points to.

Pinning an object also pins its value fields; that is, fields of primitive or value type. However, fields declared by

tracking handle (%) are not pinned.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/pin-ptr-cpp-cli.md

 Requirements

 Examples

Pinning a sub-object defined in a managed object has the effect of pinning the whole object.

If the pinning pointer is reassigned to point to a new value, the previous instance pointed to is no longer

considered pinned.

An object is pinned only while a pin_ptr points to it. The object is no longer pinned when its pinning pointer

goes out of scope, or is set to nullptr. After the pin_ptr goes out of scope, the object that was pinned can be

moved in the heap by the garbage collector. Any native pointers that still point to the object will not be updated,

and de-referencing one of them could raise an unrecoverable exception.

If no pinning pointers point to the object (all pinning pointers went out of scope, were reassigned to point to

other objects, or were assigned nullptr), the object is guaranteed not to be pinned.

A pinning pointer can point to a reference handle, value type or boxed type handle, member of a managed type,

or an element of a managed array. It cannot point to a reference type.

Taking the address of a pin_ptr that points to a native object causes undefined behavior.

Pinning pointers can only be declared as non-static local variables on the stack.

Pinning pointers cannot be used as:

function parameters

the return type of a function

a member of a class

the target type of a cast.

pin_ptr is in the cli namespace. For more information, see Platform, default, and cli Namespaces.

For more information about interior pointers, see interior_ptr (C++/CLI).

For more information about pinning pointers, see How to: Pin Pointers and Arrays and How to: Declare Pinning

Pointers and Value Types.

Compiler option: /clr

The following example uses pin_ptr to constrain the position of the first element of an array.

// pin_ptr_1.cpp
// compile with: /clr
using namespace System;
#define SIZE 10

#pragma unmanaged
// native function that initializes an array
void native_function(int* p) {
 for(int i = 0 ; i < 10 ; i++)
 p[i] = i;
}
#pragma managed

public ref class A {
private:
 array<int>^ arr; // CLR integer array

public:
 A() {
 arr = gcnew array<int>(SIZE);
 }

 void load() {
 pin_ptr<int> p = &arr[0]; // pin pointer to first element in arr
 int* np = p; // pointer to the first element in arr
 native_function(np); // pass pointer to native function
 }

 int sum() {
 int total = 0;
 for (int i = 0 ; i < SIZE ; i++)
 total += arr[i];
 return total;
 }
};

int main() {
 A^ a = gcnew A;
 a->load(); // initialize managed array using the native function
 Console::WriteLine(a->sum());
}

45

The following example shows that an interior pointer can be converted to a pinning pointer, and that the return

type of the address-of operator (&) is an interior pointer when the operand is on the managed heap.

// pin_ptr_2.cpp
// compile with: /clr
using namespace System;

ref struct G {
 G() : i(1) {}
 int i;
};

ref struct H {
 H() : j(2) {}
 int j;
};

int main() {
 G ^ g = gcnew G; // g is a whole reference object pointer
 H ^ h = gcnew H;

 interior_ptr<int> l = &(g->i); // l is interior pointer

 pin_ptr<int> k = &(h->j); // k is a pinning interior pointer

 k = l; // ok
 Console::WriteLine(*k);
};

1

// pin_ptr_3.cpp
// compile with: /clr
using namespace System;

ref class ManagedType {
public:
 int i;
};

int main() {
 ManagedType ^mt = gcnew ManagedType;
 pin_ptr<int> pt = &mt->i;
 *pt = 8;
 Console::WriteLine(mt->i);

 char *pc = (char*) pt;
 *pc = 255;
 Console::WriteLine(mt->i);
}

8
255

The following example shows that a pinning pointer can be cast to another type.

How to: Pin Pointers and Arrays
 5/13/2022 • 2 minutes to read • Edit Online

 Example
 Code

// pin_ptr_array.cpp
// compile with: /clr
#include <stdio.h>
using namespace System;

int main() {
 array<Byte>^ arr = gcnew array<Byte>(4);
 arr[0] = 'C';
 arr[1] = '+';
 arr[2] = '+';
 arr[3] = '\0';
 pin_ptr<Byte> p = &arr[1]; // entire array is now pinned
 unsigned char * cp = p;

 printf_s("%s\n", cp); // bytes pointed at by cp
 // will not move during call
}

++

 See also

Pinning a sub-object defined in a managed object has the effect of pinning the entire object. For example, if any

element of an array is pinned, then the whole array is also pinned. There are no extensions to the language for

declaring a pinned array. To pin an array, declare a pinning pointer to its element type, and pin one of its

elements.

pin_ptr (C++/CLI)

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/how-to-pin-pointers-and-arrays.md

How to: Declare Pinning Pointers and Value Types
 5/13/2022 • 2 minutes to read • Edit Online

 Example
 Code

// pin_ptr_value.cpp
// compile with: /clr
value struct V {
 int i;
};

int main() {
 V ^ v = gcnew V; // imnplicit boxing
 v->i=8;
 System::Console::WriteLine(v->i);
 pin_ptr<V> mv = &*v;
 mv->i = 7;
 System::Console::WriteLine(v->i);
 System::Console::WriteLine(mv->i);
}

8
7
7

 See also

A value type can be implicitly boxed. You can then declare a pinning pointer to the value type object itself and

use a pin_ptr to the boxed value type.

pin_ptr (C++/CLI)

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/how-to-declare-pinning-pointers-and-value-types.md

Type Forwarding (C++/CLI)
 5/13/2022 • 2 minutes to read • Edit Online

 Windows Runtime

 Common Language Runtime

 Syntax

#using "new.dll"
[assembly:TypeForwardedTo(type::typeid)];

 Parameters

 Remarks

Type forwarding allows you to move a type from one assembly (assembly A) into another assembly (assembly

B), such that, it is not necessary to recompile clients that consume assembly A.

This feature is not supported in the Windows Runtime.

The following code example demonstrates how to use type forwarding.

new

The assembly into which you are moving the type definition.

type

The type whose definition you are moving into another assembly.

After a component (assembly) ships and is being used by client applications, you can use type forwarding to

move a type from the component (assembly) into another assembly, ship the updated component (and any

additional assemblies required), and the client applications will still work without being recompiled.

Type forwarding only works for components referenced by existing applications. When you rebuild an

application, there must be the appropriate assembly references for any types used in the application.

When forwarding a type (Type A) from an assembly, you must add the TypeForwardedTo attribute for that type,

as well as an assembly reference. The assembly that you reference must contain one of the following:

The definition for Type A.

A TypeForwardedTo attribute for Type A, as well as an assembly reference.

Examples of types that can be forwarded include:

ref classes

value classes

enums

interfaces

You cannot forward the following types:

Generic types

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/type-forwarding-cpp-cli.md

 Requirements

Native types

Nested types (if you want to forward a nested type, you should forward the enclosing type)

You can forward a type to an assembly authored in any language targeting the common language runtime.

So, if a source code file that is used to build assembly A.dll contains a type definition (ref class MyClass), and

you wanted to move that type definition to assembly B.dll, you would:

#using "B.dll"
[assembly:TypeForwardedTo(MyClass::typeid)];

1. Move the MyClass type definition to a source code file used to build B.dll.

2. Build assembly B.dll

3. Delete the MyClass type definition from the source code used to build A.dll, and replace it with the

following:

4. Build assembly A.dll.

5. Use A.dll without recompiling client applications.

Compiler option: /clr

Variable Argument Lists (...) (C++/CLI)
 5/13/2022 • 2 minutes to read • Edit Online

NOTE

 Example
 Code

// mcppv2_paramarray.cpp
// compile with: /clr
using namespace System;
double average(... array<Int32>^ arr) {
 int i = arr->GetLength(0);
 double answer = 0.0;

 for (int j = 0 ; j < i ; j++)
 answer += arr[j];

 return answer / i;
}

int main() {
 Console::WriteLine("{0}", average(1, 2, 3, 6));
}

3

 Code Example

// mcppv2_paramarray2.cpp
// compile with: /clr:safe /LD
using namespace System;

public ref class C {
public:
 void f(... array<String^>^ a) {}
};

This example shows how you can use the ... syntax in C++/CLI to implement functions that have a variable

number of arguments.

This topic pertains to C++/CLI. For information about using the ... in ISO Standard C++, see Ellipsis and variadic

templates and Ellipsis and default arguments in Postfix expressions.

The parameter that uses ... must be the last parameter in the parameter list.

The following example shows how to call from C# a Visual C++ function that takes a variable number of

arguments.

The function f can be called from C# or Visual Basic, for example, as though it were a function that can take a

variable number of arguments.

https://github.com/Microsoft/cpp-docs/blob/main/docs/extensions/variable-argument-lists-dot-dot-dot-cpp-cli.md
https://docs.microsoft.com/en-us/cpp/cpp/ellipses-and-variadic-templates
https://docs.microsoft.com/en-us/cpp/cpp/postfix-expressions

// mcppv2_paramarray3.cs
// compile with: /r:mcppv2_paramarray2.dll
// a C# program

public class X {
 public static void Main() {
 // Visual C# will generate a String array to match the
 // ParamArray attribute
 C myc = new C();
 myc.f("hello", "there", "world");
 }
}

// mcpp_paramarray4.cpp
// compile with: /clr
using namespace System;

public ref class C {
public:
 void f(... array<String^>^ a) {}
};

int main() {
 C ^ myc = gcnew C();
 myc->f("hello", "world", "!!!");
}

 See also

In C#, an argument that is passed to a ParamArray parameter can be called by a variable number of arguments.

The following code sample is in C#.

A call to f in Visual C++ can pass an initialized array or a variable-length array.

Arrays

	Cover Page
	Component Extensions for .NET and UWP
	Tracking reference operator
	Handle to object operator (^)
	abstract
	Arrays
	Boxing
	Classes and structs
	Platform, default, and cli namespaces
	Compiler support for type traits
	Context-sensitive keywords
	delegate
	enum class
	event
	Exception handling
	Explicit overrides
	ref new, gcnew
	Generics
	Generics
	Overview of generics in Visual C++
	Generic functions
	Generic classes
	Generic interfaces
	Generic delegates
	Constraints on generic type parameters
	Consuming generics
	Generics and templates
	How to: Improve performance with generics

	interface class
	literal
	Windows Runtime and managed templates
	new (new slot in vtable)
	nullptr
	Override specifiers
	override
	partial
	property
	safe_cast
	String
	sealed
	typeid
	User-defined attributes
	User-defined attributes
	Attribute parameter types
	Attribute targets

	Extensions that are specific to C++/CLI
	Extensions that are specific to C++/CLI
	__identifier
	C-style casts with -clr
	interior_ptr
	interior_ptr
	How to: Declare and use interior pointers and managed arrays
	How to: Declare value types with the interior_ptr keyword
	How to: Overload functions with interior pointers and native pointers
	How to: Declare interior pointers with the const keyword

	pin_ptr
	pin_ptr
	How to: Pin pointers and arrays
	How to: Declare pinning pointers and value types

	Type forwarding
	Variable argument lists (...)

